134 research outputs found

    Multiform Adaptive Robot Skill Learning from Humans

    Full text link
    Object manipulation is a basic element in everyday human lives. Robotic manipulation has progressed from maneuvering single-rigid-body objects with firm grasping to maneuvering soft objects and handling contact-rich actions. Meanwhile, technologies such as robot learning from demonstration have enabled humans to intuitively train robots. This paper discusses a new level of robotic learning-based manipulation. In contrast to the single form of learning from demonstration, we propose a multiform learning approach that integrates additional forms of skill acquisition, including adaptive learning from definition and evaluation. Moreover, going beyond state-of-the-art technologies of handling purely rigid or soft objects in a pseudo-static manner, our work allows robots to learn to handle partly rigid partly soft objects with time-critical skills and sophisticated contact control. Such capability of robotic manipulation offers a variety of new possibilities in human-robot interaction.Comment: Accepted to 2017 Dynamic Systems and Control Conference (DSCC), Tysons Corner, VA, October 11-1

    A Novel Model of Working Set Selection for SMO Decomposition Methods

    Full text link
    In the process of training Support Vector Machines (SVMs) by decomposition methods, working set selection is an important technique, and some exciting schemes were employed into this field. To improve working set selection, we propose a new model for working set selection in sequential minimal optimization (SMO) decomposition methods. In this model, it selects B as working set without reselection. Some properties are given by simple proof, and experiments demonstrate that the proposed method is in general faster than existing methods.Comment: 8 pages, 12 figures, it was submitted to IEEE International conference of Tools on Artificial Intelligenc

    Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations

    Get PDF
    Typically, nonlinear Support Vector Machines (SVMs) produce significantly higher classification quality when compared to linear ones but, at the same time, their computational complexity is prohibitive for large-scale datasets: this drawback is essentially related to the necessity to store and manipulate large, dense and unstructured kernel matrices. Despite the fact that at the core of training a SVM there is a \textit{simple} convex optimization problem, the presence of kernel matrices is responsible for dramatic performance reduction, making SVMs unworkably slow for large problems. Aiming to an efficient solution of large-scale nonlinear SVM problems, we propose the use of the \textit{Alternating Direction Method of Multipliers} coupled with \textit{Hierarchically Semi-Separable} (HSS) kernel approximations. As shown in this work, the detailed analysis of the interaction among their algorithmic components unveils a particularly efficient framework and indeed, the presented experimental results demonstrate a significant speed-up when compared to the \textit{state-of-the-art} nonlinear SVM libraries (without significantly affecting the classification accuracy)

    Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data

    Get PDF
    The recent development of more sophisticated spectroscopic methods allows acquisition of high dimensional datasets from which valuable information may be extracted using multivariate statistical analyses, such as dimensionality reduction and automatic classification (supervised and unsupervised). In this work, a supervised classification through a partial least squares discriminant analysis (PLS-DA) is performed on the hy- perspectral data. The obtained results are compared with those obtained by the most commonly used classification approaches

    Klasifikasi Penerima Program Beras Miskin (Raskin) Di Kabupaten Wonosobo Dengan Metode Support Vector Machine Menggunakan Libsvm

    Full text link
    Beras Miskin (Raskin) Program is a program of social protection, as supporters of other programs such as nutrition improvement, healthy increase, education and productivity improvement of Poor Households. According to Badan Pusat Statistika, there were 14 criteria to determine a household is classified as poor households. Based on these criteria it will be classified of recipient households and non-recipient households of Beras Miskin (Raskin) Program by Support Vector Machine (SVM) method using LibSVM. The concept of classification by SVM is search for the best hyperplane which serves as a separator of two classes of data in the input space. Kernel function is used to convert the data into a higher dimensional space to allow a separation. LibSVM is a package program created by Chih-Chung Chang and Chih-Jen Lin from Department of Computer Science at National Taiwan University. The method used by LibSVM to obtain global solution of duality lagrange problem is decomposition method. To determine the best parameters of kernel function, used k-vold cross validation method and grid search algorithm. In this classification by SVM method using LibSVM, obtain the best accuracy value as 83,1933%, which is the kernel function Radial Basis Function (RBF)
    • …
    corecore