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Typically, nonlinear Support Vector Machines (SVMs) pro-
duce significantly higher classification quality when compared 
to linear ones but, at the same time, their computational com-
plexity is prohibitive for large-scale datasets: this drawback 
is essentially related to the necessity to store and manipulate 
large, dense and unstructured kernel matrices. Despite the fact 
that at the core of training an SVM there is a simple convex 
optimization problem, the presence of kernel matrices is re-
sponsible for dramatic performance reduction, making SVMs 
unworkably slow for large problems. Aiming at an efficient 
solution of large-scale nonlinear SVM problems, we propose 
the use of the Alternating Direction Method of Multipliers
coupled with Hierarchically Semi-Separable (HSS) kernel ap-
proximations. As shown in this work, the detailed analysis of 
the interaction among their algorithmic components unveils 
a particularly efficient framework and indeed, the presented 
experimental results demonstrate, in the case of Radial Basis 
Kernels, a significant speed-up when compared to the state-

* Corresponding authors.
E-mail addresses: scipolla@ed.ac.uk (S. Cipolla), j.gondzio@ed.ac.uk (J. Gondzio).
https://doi.org/10.1016/j.ejco.2022.100046
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European 
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100046&domain=pdf
mailto:scipolla@ed.ac.uk
mailto:j.gondzio@ed.ac.uk
https://doi.org/10.1016/j.ejco.2022.100046
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
of-the-art nonlinear SVM libraries (without significantly af-
fecting the classification accuracy).
© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Support vector machine (SVM) is one of the most well-known supervised classification 
method which has been extensively used in different fields. At its core, training nonlin-
ear SVMs classifier boils down to a solution of a convex Quadratic Programming (QP) 
problem whose running time heavily depends on the way the quadratic term interacts
with the chosen optimizer. Typically, such interaction, is represented by the solution of a 
linear system involving the quadratic term (perhaps in some suitably modified version). 
However, in the nonlinear SVM case, the quadratic term involves a kernel matrix which 
(except for the linear kernel) is a dense and unstructured matrix. Solving (or merely 
storing) a linear system involving such matrices may result in unworkably slow algo-
rithms for large scale problems. Although the use of kernel approximations in SVMs 
classification has been for a long time a relevant research question, see Section 1.1 for 
references, the existing structured approximations are not always able to capture the 
essential features of the kernel (see, once more, Section 1.1 for a detailed explanation of 
this statement) and, moreover, the selected structure for the kernel approximation may 
not be exploitable by the chosen optimizer. Aim of this work is to devise a computa-
tional framework based on the use of the Alternating Direction Method of Multipliers
(ADMM) [6] coupled with Hierarchically Semi-Separable (HSS) [7] kernel approxima-
tions. Indeed, on the one hand, this framework allows to produce kernel approximations 
essentially in a matrix-free regime and with guaranteed accuracy [12], and, on the other, 
allows the efficient solution of (shifted) linear systems involving it. In turn, when QP 
problems are solved using ADMM, the solution of shifted kernel linear systems is the 
main expensive computational task. Such a harmonized interaction between the kernel 
approximation and the optimizer not only allows a fast training phase but also makes 
possible a fast grid search for optimal hyperparameters selection through caching the 
HSS approximation/factorization.

1.1. Background and related works

Support vector machines (SVMs) [4,14] are useful and widely used classification meth-
ods. Training a nonlinear SVM has at its core (in its dual form) the solution of the 
following convex quadratic optimization problem:

min f(x) := 1xTY KY x − eTx

x∈Rd 2

http://creativecommons.org/licenses/by-nc-nd/4.0/
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s.t. yTx = 0, (1)

xi ∈ [0, C] for all i = 1, . . . , d,

where yi ∈ {−1, 1} are target labels, Y := diag(y), Kij := K(fi, fj) is a Positive Definite 
Kernel [24, Def. 3], fi ∈ Rr are feature vectors and e is the vector of all ones.

Once a solution x̄ of problem (1) has been computed, the classification function for 
an unlabelled data f can be determined by

ỹ = sign(
d∑

i=1
yix̄iK(fi, f) + b).

The bias term b is computed using the support vectors that lie on the margins, i.e., 
considering j s.t. 0 < x̄j < C, the following formula is used:

b =
d∑

i=1
yix̄iK(fi, fj) − yj . (2)

Despite their simplicity, when compared with Neural Networks (NNs), nonlinear SVMs 
are still recognized by practitioners of Machine Learning and Data Science as the pre-
ferred choice for classification tasks in some situations. In particular, the community 
seems to widely agree on the fact that NNs are not efficient on low-dimensional input 
data because of their huge overparametrization and, in this case, SVMs may represent 
the state of the art for classification, see, e.g., [43,48]. Indeed, SVMs have only two hyper-
parameters (say the choice of a kernel-related parameter h and the penalization constant 
C), so they are very easy to tune to specific problems: the parameter tuning is usually 
performed by a simple grid-search through the parameter space.

On the other hand, even if the SVM training is related to a convex optimization 
problem for which there exist efficient solution methods, training SVMs for large scale 
datasets may be a computationally challenging option essentially due to the fact that, in 
order to be able to use the Kernel Trick, SVMs cache a value for the kernelized “distance” 
between any two pairs of points: for this reason an O(d2) storage requirement is to be 
expected. In general, without any particular specialization, training SVMs is unworkably 
slow for sets beyond, say, 104 datapoints.

Without any doubts, the most successful class of methods designed to handle storage 
difficulties, is represented by decomposition methods [18,26,35,36]: unlike most opti-
mization methods which update all the variables in each step of an iterative process, 
decomposition methods modify only a subset of these at every iteration leading, hence, 
to a small sub-problem to be solved in each iteration. A prominent example in this 
class is represented by [9] which delivers a standard benchmark comparison in the SVMs 
training panorama. It is important to note at this stage that since only few variables 
are updated per iteration, for difficult/large-scale problems, decomposition methods may 
suffer from a slow convergence.
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Fig. 1. Left Panel: decay of the singular values for Gaussian Kernel matrices. Right Panel: Gaussian Kernel 
matrices obtained with/without preliminary data clustering. Dataset: heart_scale [9].

On the other hand, an alternative way to overcome storage issues is to approximate 
the kernel matrix K and, indeed, there is a rich literature concerned with the acceleration 
of kernel methods which are usually based on the efficient approximation of the kernel 
map. The most popular approach is to construct a low-rank matrix approximation of 
the kernel matrix reducing the arithmetic and storage cost [15,16,19,21–23,29,30,41,54]. 
We mention explicitly Nyström-type methods [21,28,49] and random feature maps to 
approximate the kernel function directly [37] or as a preconditioner [1]. However, the 
numerical rank of the kernel matrix depends on parameters, which are, in turn, data-
dependent: the Eckart–Young–Mirsky theorem, see [46, Sec. 2.11.1] justifies low-rank 
approximations only when the kernel matrix is characterized by a sufficiently fast decay 

of the singular values. For example, the Gaussian kernel matrix, i.e., Kij = exp− ‖fi−fi‖2

2h2 , 
is approximately low-rank only if h > 0 is sufficiently large (see the left panel in 
Fig. 1 for an example) but, for classification purposes, a small value of h may be re-
quired.

Several methods were proposed to overcome the fact that K is not necessarily ap-
proximately low-rank. The main idea, in this context, relies on the initial splitting of 
the data into clusters, so that between-classes interactions in the kernel matrix may be 
represented/well approximated by either sparse or low-rank matrices [42,47,53] (see right 
panel in Fig. 1 for a pictorial representation of this idea).

1.2. Motivations and contribution

This work represents a methodological contribution for the efficient solution of SVM 
problems. In particular, the aim of this work is to propose and analyze the use of the 
Hierarchically Semi-Separable (HSS) matrix representation [7] for the solution of large 
scale kernel SVMs. Indeed, the use of HSS approximations of kernel matrices has been 
already investigated in [12,38] for the solution of large scale Kernel Regression problems. 
The main reason for the choice of the HSS structure also in the SVM context can be 
summarized as follows:
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1. using the STRUctured Matrix PACKage (STRUMPACK) [39] it is possible to obtain HSS 
approximations of the kernel matrices without the need to store/compute explicitly 
the whole matrix K. Indeed, for kernel matrix approximations, STRUMPACK uses a 
partially matrix-free strategy (see [12]) essentially based on an adaptive randomized 
clustering and neighboring-based preprocessing of the data: in the preprocessing 
step employed by STRUMPACK, approximate clustering algorithms are employed to 
find groups of points with large inter-group distances and small intra-group dis-
tances. This feature permits to fully exploit the underlying geometry of the data 
to obtain valuable algebraic approximations of the kernel matrix. Indeed, the HSS 
structure does not require K to be low-rank, but only some off-diagonal parts to 
be rank-deficient, at least, after some suitable preprocessing. Broadly speaking, the 
preprocessing takes advantage of the fact that the interaction between two well sep-
arated clusters of data points can be approximated accurately when expressed in 
terms of the interaction between a smaller number of representative points from 
each cluster [38]. The implicit assumption made when using the HSS structure to 
approximate kernel matrices is that, after the preprocessing explained above and due 
to the exponential decay of many kernels, the resulting small intra-group distances
can be approximated by low-rank matrices and hence the resulting kernel matrices 
can be well approximated by the HSS structure (see [38, Fig. 1a]);

2. the resulting approximations allow fast approximate kernel matrix computations 
with linear scalability for the computation of matrix-vector products and solution of 
linear systems, see [7,8,39].

In particular, we trace the main contribution of this work in unveiling a particularly 
efficient interaction between the HSS structure and ADMM [6] in the SVMs case, see 
Section 2. When problem (1) is suitably reformulated in a form exploitable by ADMM, 
the solution of just one linear system involving the (shifted) kernel matrix is required 
per ADMM iteration: kernel matrices approximated using the HSS structure allow highly 
efficient solutions of such linear systems. Indeed, in this framework, approximating the 
kernel matrix with an HSS structure (h fixed) results in a very efficient optimization 
phase for a fixed value of C (see Section 3.3). Moreover, it is important to note that 
the computational footprint related to the kernel matrix approximation phase is fully 
justified by the fact that the same approximation can be reused for training the model 
with different values of C; this feature makes our proposal particularly attractive when 
a fine grid is used for the tuning of the penalization parameter C. It is important to 
note, at this stage, that also the works [25,52] analyze the use of ADMM for SVMs: 
in [52] ADMM has been used to solve linear SVMs with feature selection whereas in 
[25] a hardware-efficient nonlinear SVM training algorithm has been presented in which 
the Nyström approximation is exploited to reduce the dimension of the kernel matrices. 
Nevertheless, as highlighted at the end of Section 1.1, the ability to approximate kernel 
matrices with low-rank ones depends on the chosen kernel parameters (see the left panel 
in Fig. 1). On the other hand, the optimal values of the kernel parameters are, in turn, 
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data-dependent. Indeed, in general, when training a kernel based SVM, the kernel pa-
rameters for which the best performance is achieved in terms of classification accuracy, 
are not known before hand, and, to the best of our knowledge, the validity of the small 
numerical rank assumption is one of the main limitations for training Kernel SVM using 
kernel approximations. The efficient combination of ADMM with kernel approximations 
applicable in cases where the small numerical rank of the kernel matrix is not assumed, 
represents the key element of novelty of our approach when compared to the existing 
literature.

2. The computational framework

Problem (1) can be written as follows:

min
x, z∈Rd

1
2xTY KY x − eTx + IyTx=0(x) + I[0,C](z)

s.t. x − z = 0,
(3)

where, for a given subset S ⊂ Rd, IS(x) is the indicator function of the set S, defined as

IS(x) :=
{

0 if x ∈ S

+∞ if x /∈ S.

The Augmented Lagrangian corresponding to (3) reads as

Lβ(x, z,μ) = 1
2xTY KY x− eTx + IyTx=0(x) + I[0,C](z)−μT (x− z) + β

2 ‖x− z‖2. (4)

Reformulation (3) with an extra copy of variable x makes it easier to exploit partial 
separability and facilitates a direct application of ADMM to solve it. Indeed, ADMM 
[6] is our choice of an (efficient) solution technique for problem (3). In Algorithm 1 we 
summarize its main steps:

Algorithm 1: ADMM.
1 for k = 0, 1, . . . do
2 xk+1 = minx∈Rd Lβ(x, zk, μk) ; /* x minimization */
3 zk+1 = minz∈Rd Lβ(xk+1, z, μk) ; /* z minimization */
4 μk+1 = μk − β(xk+1 − zk+1) ; /* Multiplier Update */
5 end

2.1. ADMM details

Let us observe that the solution of the problem in Line 2 of Algorithm 1 is equivalent 
to the solution of the problem
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min
x∈Rd

1
2xTY (K + βI)︸ ︷︷ ︸

=:Kβ

Y x − (e + μk + βzk)T︸ ︷︷ ︸
=:qk

x

s.t. yTx = 0.

(5)

Stating the KKT conditions of problem (5), i.e.,

[
Y KβY −y
−yT 0

] [
x
λ

]
=

[
e + μk + βzk

0

]
,

and eliminating the variable λ, it is possible to write its solution in a closed form:

xk+1 = Y K−1
β Y qk −

eTK−1
β Y qk

eTK−1
β e

Y K−1
β e,

where we used the fact that Y y = e. Moreover, the problem at Line 3 of Algorithm 1
can be written alternatively as

arg min
z∈[0,C]

g(z) := β

2 zT z − βzTxk+1 + zTμk,

which also has a closed-form solution (see [3, Example 2.2.1]):

zk+1 = Π[0,C](xk+1 − 1
β
μk), (6)

where Π[0,C] is the component-wise projection onto the interval [0, C]. Summarizing the 
observations carried out in this section, we observe that Algorithm 1 can be written in 
closed form as in Algorithm 2:

Algorithm 2: Closed form ADMM for problem (3).
1 for k = 0, 1, . . . do
2 xk+1 = Y K−1

β Y qk − eT K−1
β

Y qk

eT K−1
β e

Y K−1
β e ; /* x minimization */

3 zk+1 = Π[0,C](xk+1 − 1
βμk) ; /* z minimization */

4 μk+1 = μk − β(xk+1 − zk+1) ; /* Multiplier Update */
5 end

2.1.1. Computational cost and convergence
Algorithm 2 requires the solution of a linear system involving the matrix Kβ at ev-

ery iteration (the vector Y K−1
β e can be precomputed) plus a series of operations of 

linear complexity. Moreover, since Algorithm 2 is a particular instance of ADMM, it is 
convergent, see [6].
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3. Experiments

3.1. Hierarchically semi-separable matrix representation

As already pointed out previously, one of the main computational issues associated 
with problem (1) relates to the fact that the matrix K is usually dense and of large 
dimension: the cubic computational complexity of application and the quadratic storage 
requirements for kernel matrices limit the applicability of kernel methods for SVM in 
large scale applications. To overcome this problem many different approaches have been 
proposed in literature, see the discussion in Section 1. The one we decide to employ 
here is the Hierarchically Semi-Separable (HSS) approximation of the kernel matrix in 
the form proposed in [12]. In general, the HSS approximation of a given matrix uses 
a hierarchical block 2 × 2 partitioning of the matrix where all off-diagonal blocks are 
compressed, or approximated, using a low-rank product [7]. The accurate description of 
the HSS compression technique in the case of kernel matrices is out of the scope of this 
work and, for this reason, we refer the reader to [12, Sec. II.B – II.C] for the full details. 
See also [32] and [39, Sec. 2.1] for more details on the HSS structure. The particular 
version of HSS we choose for our purposes is HSS-ANN (Hierarchically Semi-Separable 
- Approximate Nearest Neighbours), introduced in [12]. We mention explicitly the the 
features of HSS-ANN which have driven our choice:

• instead of using a randomized sampling (see [32]) to approximate column range of 
sub-matrices of K, this approach uses the kernel function to assess the similarity be-
tween data points and hence to identify the dominating entries of the kernel matrix. 
In particular, the columns corresponding to dominating Approximate Nearest Neigh-
bours (ANN, see [31,51]) of the data points are selected to produce approximations 
of the column basis of particular sub-matrices of K, see [12, Sec. II.B]. As a result, 
the overall sampling strategy fully exploits the geometry of the underlying data-set 
and has a reduced cost when compared to the earlier HSS construction approaches, 
see [12, Sec. II-A] for a detailed comparison.

• the overall complexity of the HSS-ANN construction (excluding the preprocessing 
clustering phase on the data) is O(r2d) where r is the maximum HSS rank, i.e., the 
maximum rank over all off-diagonal blocks in the HSS hierarchy, see [12, Sec. II.C 
and Alg. 3]. The storage complexity of HSS-ANN is O(dr);

• as a result of the previous two items, HSS-ANN exhibits better performance in terms 
of efficiency and approximation quality when compared with its predecessor and 
direct competitor, namely ASKIT/INV-ASKIT [10,11,31], which uses a block-diagonal-
plus-low-rank hierarchical matrix format to construct an approximate representation, 
see [12, Sec. III];

• after the compression, the (shifted) HSS kernel matrix approximation can be factor-
ized into a ULV -type form [39, Sec. 2.4], which exploits the special structure of the 
HSS generators coming from the Interpolative Decomposition, see [12, Alg. 3] and 
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references therein. This factorization, computed just once for fixed h in our approach, 
has a cost of O(r2d) and can be used to solve linear systems involving the (shifted) 
kernel matrix in complexity O(rd), see [39, Sec. 2.5].

3.2. Implementation details

In Algorithm 3 we summarize the pseudo-code of our implementation. It is based 
on STRUMPACK library (Version 5.1.0) [20,44] which provides efficient routines for the 
approximation K̃ of a kernel matrix K and efficient routines for the solution of the 
corresponding shifted linear systems. In particular, in Line 1 of Algorithm 3 such K̃ is 
obtained and, in Line 3, the ULV -type factorization of the matrix K̃β := K̃+βI is com-
puted for the efficient solution of linear systems of the form K̃βx = b. It is worth noting, 
at this stage, that for a fixed kernel value h the approximation K̃ and the ULV -type fac-
torization of K̃β are computed just once and then reused for all the values C in the grid 
search (see Line 7 of Algorithm 3). Lines 9 - 14 of Algorithm 3 correspond to the ADMM 
optimization routine, see Algorithm 2 (resp. Algorithm 1). The “x minimization” step, 
which represents the dominant step in terms of computational cost, see Line 11, is per-
formed resorting to the ULV -type factorization previously computed. In Lines 15 - 17
of Algorithm 3 the bias b is computed. It is important to note that, in practice, the bias 
is obtained averaging over all the support vectors that lie on the margin (see Line 17) 
instead of using equation (2). Indeed, defining M := {j | 0 < x̄j < C} and ēj = 1 if 
j ∈ M or ēj = 0 otherwise, the bias b is often computed using

b = 1
|M |

∑
j ∈M

(
d∑

i=1
yix̄iK(fi, fj) − yj) = 1

|M | (x̄
T
yKē −

∑
j ∈M

yj), (7)

where (x̄y)j := yj x̄j . If the full kernel matrix K is not available, computing (7) may 
be time consuming for large datasets since it requires a series of kernel evaluations. On 
the other hand, the right-hand side of equation (7) suggests that if an approximation 
K̃ of K is available for which matrix vector products can be inexpensively evaluated, 
the bias computation requires exactly just one matrix vector product and one scalar 
product. This is indeed the case when an HSS approximation of the kernel matrix is 
available and we exploit this property in our implementation, see, once more, Line 17 in 
Algorithm 3. Finally, in Lines 18 - 20 of Algorithm 3 we report the details for the “Label 
Assignment” of the testing instances.

To conclude this section, we address briefly the problem of relating the solution x̃ of 
the approximated SVM problem

min
x∈Rd

f̃(x) := 1
2xTY K̃Y x − eTx

s.t. yTx = 0, (8)

xi ∈ [0, C] for all i = 1, . . . , d,
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Algorithm 3: SVM training/testing using Strumpack and ADMM.
Input: K kernel function, h kernel parameter, β ADMM parameter, Ftrain ∈ Rr×d, ytrain ∈ Rd, 

Ftest ∈ Rr×m , ytest ∈ Rm – training and testing data.
1 K̃ = HSScompression(K(Ftrain, Ftrain), h) ;
2 K̃β = K̃ + βI;
3 [U, L, V ] = ULVfactorization(K̃β) ;
4 w = (ULV )−1e;
5 w1 = eTw;
6 w = Ytrainw ;
7 for C ∈ {C1, . . . , Cmax} do
8 Initialize x0, z0, μ0 ;
9 for k = 0, 1, . . . , MaxIt do

10 w2 = wTxk;
11 xk+1 = Y (ULV )−1Y xk − w2

w1w ; /* x minimization, see Algorithm 2 */
12 zk+1 = Π[0,C](xk+1 − 1

βμk) ; /* z minimization, see Algorithm 2 */
13 μk+1 = μk − β(xk+1 − zk+1) ; /* Multiplier Update, see Algorithm 2 */
14 end
15 Define zy = YtrainzMaxIt ; /* Computing Bias */
16 Define ēj = 1 if 0 < (zMaxIt)j < C or ēj = 0 otherwise ;
17 b = 1

‖ē‖1
(zy

T K̃ē −
∑

j :ēj �=0(ytrain)j) ;
18 for j = 1, . . . , m do
19 (ỹtest)j = sign(

∑d
i=1(zy)iK((ftrain)i, (ftest)j) + b) ; /* Label Assignement */

20 end
21 end

to the solution x̄ of the original problem (1). Indeed, using a similar technique to the 
one presented in [19, Sec. 4.1.], for any unitary invariant form we obtain

|f(x̄) − f̃(x̃)| ≤ max{1
2 |x̃

TY (K̃ −K)Y x̃|, 1
2 |x̄

TY (K − K̃)Y x̄|}

≤ 1
2 max{‖x̃‖2, ‖x̄‖2}‖K̃ −K‖.

(9)

Using the boundedness of 1
2 max{‖x̃‖2, ‖x̄‖2}, we obtain that for K̃ → K it holds 

f̃(x̃) → f(x̄). Equation (9) suggests that for increasingly accurate approximations K̃
of K, the accuracy classification performance of the approximate SVM classifier (8)
matches increasingly closely the accuracy classification performance of the exact SVM 
classifier (1). Nonetheless, we will show experimentally, that this may be also true when 
quite poor approximations are used, see Table 4 in the following section. Indeed, sur-
prisingly enough, it has been observed multiple times that for kernel methods even poor 
approximations of the kernel can suffice to achieve near-optimal performance [2,40]. On 
the other hand, it is also important to note that if the matrix K has the HSS property
(see [32, Sec. 3]), and assuming that K̃ is computed by truncating every HSS block with 
a truncation tolerance O(ε), then also the global error ‖K − K̃‖ stays of order O(ε): 
specific results are available for the Frobenius and spectral norms, see [50, Corollary 
4.3] and [27, Theorem 4.7]. In particular, supposing that every HSS block of K can be 
approximated with an error O(ε) by a matrix of rank r, if a randomized sampling pro-
cedure is used to produce the low-rank approximations with oversampling parameter p, 



S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 11
Table 1
Problem Set Details. * = Test Set obtained using Random 30% of the original Training Set.

Dataset Features Training Set Dim. |Train+| Test Set Dim. |Test+|
a8a 122 22696 5506 9865 2335
w7a 300 24692 740 25057 739
rcv1.binary 47236 20242 10491 135480 71326
a9a 122 32561 7841 16281 3846
w8a 300 49749 1479 14951 454
ijcnn1 22 49990 4853 91701 8712
cod.rna 8 59535 19845 271617 90539
skin.nonskin* 3 171540 135986 73517 58212
webspam.uni* 254 245000 148717 105000 63472
susy* 18 3500000 1601659 1500000 686168

then K̃ is a global O(ε) approximation with probability at least 1 − 6p−p (see [32, Sec. 
2.3] and discussion in [33, Sec. 3.2]).

3.3. Numerical results

Our code is written in C++ and the numerical experiments are performed on a Dell 
PowerEdge R920 machine running Scientific Linux 7 and equipped with Four Intel 
Xeon E7-4830 v2 2.2 GHz, 20M Cache, 7.2 GT/s QPI, Turbo (4x10Cores) 256 GB 
RAM. The code is publicly available at the address https://github .com /StefanoCipolla /
Strumpack _ADMM. In the following, we report on its performance in the case of the 
Gaussian Kernel, but similar computational results are expected to hold for Laplacian 
and ANOVA kernels since the efficiency of HSS-ANN has been demonstrated also in 
these cases, see [12, Fig. 5].

Table 1 summarizes the details for the chosen dataset. In Tables 4 and 5 we report the 
results obtained using our proposal for different parameters related to the accuracy of the 
HSS-ANN approximation (increasing accuracy) where all the other non specified HSS-
ANN parameters have to be considered the default ones. In our experiments we choose, 
in Algorithm 3, MaxIt = 10 and the Gaussian Kernel function K(fi, fj) = exp− ‖fi−fi‖2

2h2 . 
Indeed, it is important to observe that the choice of making a prescribed number of 
ADMM iterations instead of using a standard stopping criterion is motivated by the 
fact that for machine learning applications going for accurate optimal solution does 
not necessarily have to deliver the best classification accuracy. On the other hand, the 
fact that one choice of the ADMM parameter MaxIt permits to obtain satisfactory 
classification accuracy for all the problems in our dataset confirms the robustness of the 
proposed approach. It is worth mentioning that computational experience confirms that 
a different choice of this parameter may lead to a better classification performance for 
particular test examples. Finally, concerning the choice of the ADMM parameter β, we 
observed that for larger problems an increasing value of β is recommended: we chose 
β = 102 if the training size d ∈ [104, 105], β = 103 if d ∈ [105, 106] and β = 104 if 
d ≥ 106.

https://github.com/StefanoCipolla/Strumpack_ADMM
https://github.com/StefanoCipolla/Strumpack_ADMM
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Table 2
LIBSVM. †† = stopped after 10h.

Dataset Runtime [s] Accuracy [%]
a8a 123.308 83.953
w7a 148.110 97.904
rcv1.binary 261.399 93.247
a9a 305.913 82.697
w8a 508.232 99.444
ijcnn1 345.805 96.007
cod.rna 110.997 90.374
skin.nonskin 344.938 99.960
webspam.uni 13354.384 99.081
susy ††

Table 3
RACQP. †† = stopped after 10h.

Dataset Runtime [s] Accuracy [%]
a8a 98.269 79.757
w7a 82.838 97.050
rcv1.binary 67.830 71.987
a9a 206.527 82.237
w8a 348.122 97.806
ijcnn1 427.551 91.460
cod.rna 531.787 33.333
skin.nonskin 4689.815 97.649
webspam.uni 21669.329 92.830
susy ††

In Table 2 we report the results obtained using LIBSVM Version 3.25 [9], which 
implements specialized algorithms for the SVM problem (LIBSVM uses a Sequential 
Minimal Optimization type decomposition method [5,17,36]). In Table 3 we report the 
results obtained using RACQP [34] (where a multi-block generalization of ADMM is 
employed, see also [13,45] for related theoretical analysis).

In particular, the kernel parameter h and the penalization term C were estimated 
by running a grid-check when instances were solved using our proposal (the HSS-ANN 
accuracy parameters used were those specified in Table 5 since our proposal achieved 
(generally) the best classification accuracy in this case). Those pairs were then used to 
solve the instances with LIBSVM and RACQP. The pairs were chosen from a relatively 
coarse grid, h, C ∈ {0.1, 1, 10} because the goal of this experiment was to demonstrate 
that although our approach uses kernel approximations, it can still achieve comparable 
classification accuracy but with a reduced runtime when compared with other algorithms 
for the solution of SVM problems which use the true kernel matrices.

The first important observation concerning Tables 4 and 5 is that, unexpectedly (see 
equation (9)), increasing the HSS accuracy parameters (generally) does not lead to a sig-
nificant increase of classification accuracy: we obtain quite good classification accuracy 
despite using very rough approximations (see Table 4). The problem which benefited 
most an improved kernel approximation is webspam.uni. Indeed, the classification ac-
curacy has increased by nearly 1% in this case. At the same time, increasing the HSS 



S.
C
ipolla,

J.
G

ondzio
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

10
(2022)

100046
13

proximate_neighbors= 64.
Best Parameters Accuracy [%]
h C

1 1,10 83.314
1 1,10 97.465
10 1,10 89.940
1 1,10 83.477
1 1,10 97.679
0.1 1,10 92.403
10 0.1 89.305
10 0.1,1,10 99.846
0.1 0.1,1,10 95.551
1 0.1,1,10 72.338

s_approximate_neighbors= 512.
Best Parameters Accuracy [%]
h C

1 1,10 83.476
1 1,10 97.465
10 1,10 87.921
1 1,10 83.643
1 1,10 97.672
0.1 1,10 92.314
10 1,10 89.308
10 0.1,1,10 99.855
0.1 0.1,1,10 96.123
1 0.1,1,10 72.047
Table 4
Strumpack&ADMM. Strumpack parameters: hss_rel_tol= 1, hss_abs_tol= 0.1, hss_max_rank= 200, hss_ap

Dataset HSS Construction ADMM Time [s]
Compression [s] Factorization [s] Memory [MB]

a8a 135.923 6.181 112.968 0.300
w7a 2161.920 14.442 99.345 0.486
rcv1.binary 6319.780 1.665 58.839 0.173
a9a 256.032 8.162 179.192 0.471
w8a 10476.200 107.71 273.1 1.498
ijcnn 9.772 1.980 153.586 0.470
cod.rna 2.900 2.863 181.47 0.444
skin.nonskin 1127.79 11.078 538.349 1.219
webspam.uni 5809.6 3.228 757.969 0.909
susy 3938.68 25.614 13599.4 9.471

Table 5
Strumpack&ADMM. Strumpack parameters: hss_rel_tol= 0.5, hss_abs_tol= 0.05, hss_max_rank= 2000, hs

Dataset HSS Construction ADMM Time [s]
Compression [s] Factorization [s] Memory [MB]

a8a 795.597 16.276 218.673 0.588
w7a 2311.330 15.229 107.393 0.621
rcv1.binary 14211.0 1.425 58.84 0.210
a9a 1176.99 21.3909 379.852 0.986
w8a 10774.900 124.076 296.472 1.738
ijcnn 21.393 2.041 168.007 0.298
cod.rna 23.242 2.377 182.424 0.280
skin.nonskin 1232.730 7.560 544.544 0.972
webspam.uni 7003.52 5.640 861.542 1.297
susy 14495.9 159.972 18264.2 15.889
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Fig. 2. Heatmap of the classification accuracy for the datasets a9a and ijcnn1.

accuracy parameters adversely affects the Compression and Factorization time. It is 
important to note also that the ADMM Time needed to train the model is completely neg-
ligible when compared to the time needed to produce the HSS-ANN approximations. As 
was already pointed out, this feature allows for a very fast grid-search on the parameter 
C (for the largest considered problem it takes roughly 10 s to train the model for a fixed 
C). Indeed, the choice of the parameter C may greatly affect the performance of the 
classification accuracy (see Fig. 2 for some examples).

Concerning the comparison of our approach with LIBSVM and RACQP (compare 
Tables 4 and 5 with Tables 2 and 3, respectively) several remarks are in order. The 
first one concerns the coherence of the HSS-ANN approximations with the classifica-
tion accuracy: the accuracy results obtained for the grid-selected h and C are always 
comparable to those obtained using LIBSVM and generally better than those obtained 
using RACQP (both approaches use, in different ways, the true kernel matrices). The 
second one concerns the computational time: for smallest problems or problems with 
high dimensional features, our proposal may not be the best performer (see, e.g., the 
problems w7a, rcv1.binary and w8a) but, on the contrary, when the dimension of the 
training set increases and the number of features is small, the approach proposed in this 
paper becomes a clear winner (see problems ijcnn, cod.rna, webspam.uni and susy): 
the goodness and advantages of our approach are further underpinned observing that 
the total training time needed for the grid search on the parameter C (h fixed) can be 
roughly obtained multiplying the values in the column ADMM Time by the number of grid 
values selected for C (in our case 3). This is not true for LIBSVM and RACQP where 
the training phase is restarted from scratch for all the values C (considering also in this 
case h fixed). All the previous observations are further highlighted by Fig. 3, where the 
results presented in Table 2 (LIBSVM), Table 3 ((RACQP), Table 4 (HSS-ADMM (1)) and 
Table 5 (HSS-ADMM (2))) are pictorially summarized.

Finally, for the sake of fairness, concerning the comparison of running times of our pro-
posal with those from RACQP, we should mention the fact that RACQP is implemented 
in Matlab, which is presumably slower than a compiled language such as C++.
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Fig. 3. Summary of the results contained in Table 2 (LIBSVM), Table 3 (RACQP), Table 4 (HSS-ADMM (1)) and 
Table 5 (HSS-ADMM (2)).

4. Conclusions and future work

In this work we proposed an ADMM-based scheme (see Algorithm 3) which employs 
HSS-ANN approximations (see [12] and Section 3) to train SVMs. Numerical experiments 
obtained using STRUMPACK [44] in a sequential architecture, show that our proposal com-
pares favorably with LIBSVM [9] and RACQP [34] in terms of computational time and 
classification accuracy when the dimension of the training set increases. Indeed, both
LIBSVM and RACQP use different decomposition methods for the exact kernel matrix, 
which may be slow for large scale problems. Our proposal, instead, resorting on an all-
at-once optimal exploitation of structured approximations of the kernel matrices, is less 
prone to the curse of dimensionality allowing us to train datasets of larger dimensions. 
Finally, as subject of future work, the authors will consider performing a thorough com-
parison of the efficiency of the proposed framework against other possible couplings of 
the type ADMM+Kernel Approximation.
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