14 research outputs found

    Számítóháló alkalmazások teljesítményanalízise és optimalizációja = Performance analysis and optimisation of grid applications

    Get PDF
    Számítóhálón (griden) futó alkalmazások, elsősorban workflow-k hatékony végrehajtására kerestünk újszerű megoldásokat a grid teljesítményanalízis és optimalizáció területén. Elkészítettük a Mercury monitort a grid teljesítményanalízis követelményeit figyelembe véve. A párhuzamos programok monitorozására alkalmas GRM monitort integráltuk a relációs adatmodell alapú R-GMA grid információs rendszerrel, illetve a Mercury monitorral. Elkészült a Pulse, és a Prove vizualizációs eszköz grid teljesítményanalízist támogató verziója. Elkészítettünk egy state-of-the-art felmérést grid teljesítményanalízis eszközökről. Kidolgoztuk a P-GRADE rendszer workflow absztrakciós rétegét, melyhez kapcsolódóan elkészült a P-GRADE portál. Ennek segítségével a felhasználók egy web böngészőn keresztül szerkeszthetnek és hajthatnak végre workflow alkalmazásokat számítóhálón. A portál különböző számítóháló implementációkat támogat. Lehetőséget biztosít információ gyűjtésére teljesítményanalízis céljából. Megvizsgáltuk a portál erőforrás brókerekkel való együttműködését, felkészítettük a portált a sikertelen futások javítására. A végrehajtás optimalizálása megkövetelheti az alkalmazás egyes részeinek áthelyezését más erőforrásokra. Ennek támogatására továbbfejlesztettük a P-GRADE alkalmazások naplózhatóságát, és illesztettük a Condor feladatütemezőjéhez. Sikeresen kapcsoltunk a rendszerhez egy terhelés elosztó modult, mely képes a terheltségétől függően áthelyezni a folyamatokat. | We investigated novel approaches for performance analysis and optimization for efficient execution of grid applications, especially workflows. We took into consideration the special requirements of grid performance analysis when elaborated Mercury, a grid monitoring infrastructure. GRM, a performance monitor for parallel applications, has been integrated with R-GMA, a relational grid information system and Mercury as well. We developed Pulse and Prove visualisation tools for supporting grid performance analysis. We wrote a comprehensive state-of-the art survey of grid performance tools. We designed a novel abstraction layer of P-GRADE supporting workflows, and a grid portal. Users can draft and execute workflow applications in the grid via a web browser using the portal. The portal supports multiple grid implementations and provides monitoring capabilities for performance analysis. We tested the integration of the portal with grid resource brokers and also augmented it with some degree of fault-tolerance. Optimization may require the migration of parts of the application to different resources and thus, it requires support for checkpointing. We enhanced the checkpointing facilities of P-GRADE and coupled it to Condor job scheduler. We also extended the system with a load balancer module that is able to migrate processes as part of the optimization

    GRID COMPUTING FOR COLLABORATIVE NETWORKS: A LITERATURE REVIEW

    Get PDF
    This paper describes the methodology and results of a literature review targeting the distinct interpretations of the Grid Computing paradigm within the context of Collaborative Networks. The review is based on the analysis of contributions published in selected scientific journals between 2002 and today. The analysis was performed taking into account the assumptions, scopes and solutions provided to approach the challenges for SMEs’ collaborative networks. The research questions driving this literature review have been the following: (1) How is the concept of Grid Computing associated with the concept of Collaborative Network? (2) How the Grid computing supports Collaborative Networks? (3) What are the business implications in Grid supported Collaborative Networks

    Redes de Cooperação Tecnológica em Bio-Manguinhos: o Papel das Tecnologias de Informação e Comunicação

    Get PDF
    This article identifies and discusses the contribution of information and communication technologies (ICTs) to the technological cooperation projects of Bio-Manguinhos, a pharmaceutical manufacturer that belongs to Osvaldo Cruz Foundation (FIOCRUZ), responsible for producing vaccines, reagents and biopharmaceuticals, with priority on meeting the needs of the Brazilian public health system. It is a case study with a qualitative approach for descriptive and explanatory purposes. The data were collected from 14 interviews conducted with managers of research and development (R&D) projects with high relevance to the organization. The results allow concluding that the ICTs requiring greater interdependence between partners and two-way knowledge flows have not yet been used. They also show the importance of closer cooperation between the information technology (IT) and R&D areas. A future positioning of Bio-Manguinhos as a technological center focused on discovery and sale of new active ingredients can favor the use of tools that promote greater integration between the partners of technology cooperation networks. Este artigo tem como objetivo identificar e discutir a contribuição das Tecnologias da Informação e Comunicação (TICs) para os projetos de cooperação tecnológica de Bio-Manguinhos, laboratório farmacêutico pertencente à Fundação Osvaldo Cruz (FIOCRUZ) e responsável pela produção de vacinas, de reativos e de biofármacos voltados para atender, prioritariamente, às demandas da saúde pública brasileira. Trata-se de um estudo de caso com abordagem qualitativa e observação participante, com finalidades descritiva e explicativa. Os dados foram coletados em 14 entrevistas realizadas com gestores de projetos de Pesquisa e Desenvolvimento (P&D) de alta relevância para a organização. Os resultados permitem concluir que as TICs envolvendo, necessariamente, maior interdependência entre os parceiros com fluxos bidirecionais de conhecimento ainda não eram utilizadas. Também ficou evidente a importância de uma maior aproximação entre a área de Tecnologia da Informação (TI) e a área de P&D. Conclui-se que um futuro posicionamento de Bio-Manguinhos como um centro tecnológico voltado para a descoberta e comercialização de novos princípios ativos pode favorecer o uso de ferramentas que contribuam para um nível maior de integração entre os parceiros das redes de colaboração tecnológica

    Automatic deployment and reproducibility of workflow on the Cloud using container virtualization

    Get PDF
    PhD ThesisCloud computing is a service-oriented approach to distributed computing that has many attractive features, including on-demand access to large compute resources. One type of cloud applications are scientific work ows, which are playing an increasingly important role in building applications from heterogeneous components. Work ows are increasingly used in science as a means to capture, share, and publish computational analysis. Clouds can offer a number of benefits to work ow systems, including the dynamic provisioning of the resources needed for computation and storage, which has the potential to dramatically increase the ability to quickly extract new results from the huge amounts of data now being collected. However, there are increasing number of Cloud computing platforms, each with different functionality and interfaces. It therefore becomes increasingly challenging to de ne work ows in a portable way so that they can be run reliably on different clouds. As a consequence, work ow developers face the problem of deciding which Cloud to select and - more importantly for the long-term - how to avoid vendor lock-in. A further issue that has arisen with work ows is that it is common for them to stop being executable a relatively short time after they were created. This can be due to the external resources required to execute a work ow - such as data and services - becoming unavailable. It can also be caused by changes in the execution environment on which the work ow depends, such as changes to a library causing an error when a work ow service is executed. This "work ow decay" issue is recognised as an impediment to the reuse of work ows and the reproducibility of their results. It is becoming a major problem, as the reproducibility of science is increasingly dependent on the reproducibility of scientific work ows. In this thesis we presented new solutions to address these challenges. We propose a new approach to work ow modelling that offers a portable and re-usable description of the work ow using the TOSCA specification language. Our approach addresses portability by allowing work ow components to be systematically specifed and automatically - v - deployed on a range of clouds, or in local computing environments, using container virtualisation techniques. To address the issues of reproducibility and work ow decay, our modelling and deployment approach has also been integrated with source control and container management techniques to create a new framework that e ciently supports dynamic work ow deployment, (re-)execution and reproducibility. To improve deployment performance, we extend the framework with number of new optimisation techniques, and evaluate their effect on a range of real and synthetic work ows.Ministry of Higher Education and Scientific Research in Iraq and Mosul Universit
    corecore