12,902 research outputs found

    Evoplex: A platform for agent-based modeling on networks

    Full text link
    Agent-based modeling and network science have been used extensively to advance our understanding of emergent collective behavior in systems that are composed of a large number of simple interacting individuals or agents. With the increasing availability of high computational power in affordable personal computers, dedicated efforts to develop multi-threaded, scalable and easy-to-use software for agent-based simulations are needed more than ever. Evoplex meets this need by providing a fast, robust and extensible platform for developing agent-based models and multi-agent systems on networks. Each agent is represented as a node and interacts with its neighbors, as defined by the network structure. Evoplex is ideal for modeling complex systems, for example in evolutionary game theory and computational social science. In Evoplex, the models are not coupled to the execution parameters or the visualization tools, and there is a user-friendly graphical interface which makes it easy for all users, ranging from newcomers to experienced, to create, analyze, replicate and reproduce the experiments.Comment: 6 pages, 5 figures; accepted for publication in SoftwareX [software available at https://evoplex.org

    An empirical learning-based validation procedure for simulation workflow

    Full text link
    Simulation workflow is a top-level model for the design and control of simulation process. It connects multiple simulation components with time and interaction restrictions to form a complete simulation system. Before the construction and evaluation of the component models, the validation of upper-layer simulation workflow is of the most importance in a simulation system. However, the methods especially for validating simulation workflow is very limit. Many of the existing validation techniques are domain-dependent with cumbersome questionnaire design and expert scoring. Therefore, this paper present an empirical learning-based validation procedure to implement a semi-automated evaluation for simulation workflow. First, representative features of general simulation workflow and their relations with validation indices are proposed. The calculation process of workflow credibility based on Analytic Hierarchy Process (AHP) is then introduced. In order to make full use of the historical data and implement more efficient validation, four learning algorithms, including back propagation neural network (BPNN), extreme learning machine (ELM), evolving new-neuron (eNFN) and fast incremental gaussian mixture model (FIGMN), are introduced for constructing the empirical relation between the workflow credibility and its features. A case study on a landing-process simulation workflow is established to test the feasibility of the proposed procedure. The experimental results also provide some useful overview of the state-of-the-art learning algorithms on the credibility evaluation of simulation models

    Self-organization in Communicating Groups: the emergence of coordination, shared references and collective intelligence\ud

    Get PDF
    The present paper will sketch the basic ideas of the complexity paradigm, and then apply them to social systems, and in particular to groups of communicating individuals who together need to agree about how to tackle some problem or how to coordinate their actions. I will elaborate these concepts to provide an integrated foundation for a theory of self-organization, to be understood as a non-linear process of spontaneous coordination between actions. Such coordination will be shown to consist of the following components: alignment, division of labor, workflow and aggregation. I will then review some paradigmatic simulations and experiments that illustrate the alignment of references and communicative conventions between communicating agents. Finally, the paper will summarize the preliminary results of a series of experiments that I devised in order to observe the emergence of collective intelligence within a communicating group, and interpret these observations in terms of alignment, division of labor and workflow

    Simulation Models for Analyzing the Dynamic Costs of Process-aware Information Systems

    Get PDF
    Introducing process-aware information systems (PAIS) in enterprises (e.g., workflow management systems, case handling systems) is associated with high costs. Though cost estimation has received considerable attention in software engineering for many years, it is difficult to apply existing approaches to PAIS. This difficulty particularly stems from the inability of existing estimation techniques to deal with the complex interplay of the many technological, organizational and project-driven factors which emerge in the context of PAIS. In response to this problem, this paper proposes an approach which utilizes simulation models for investigating the dynamic costs of PAIS engineering projects. We motivate the need for simulation, discuss the development and execution of simulation models, and give an illustrating example. The present work has been accomplished in the EcoPOST project, which deals with the development of a comprehensive evaluation framework for analyzing PAIS engineering projects from a value-based perspective

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    A Reputation-Based Approach to Self-Adaptive Service Selection

    Get PDF
    Service-orientation provides concepts and tools for flexible composition and management of largescale distributed software applications. The automated run-time management of such loosely coupled software systems, however, poses still major challenges and is therefore an active research area, including the use of novel computing paradigms. In this context, the dynamic and adaptive selection of best possible service providers is an important task, which can be addressed by an appropriate middleware layer that allows considering different service quality aspects when managing the adaptive execution of distributed service workflows dynamically. In such an approach, service consumers are enabled to delegate the adaptive selection of service providers at run-time to the execution infrastructure. The selection criteria used are based on the cost of a service provision and the continuous, dynamic evaluation of reputations of providers, i.e. maintained track records of meeting the respective service commitments. This paper discusses the design and operating principle of such an automatic service selection middleware extension. Its ability to balance different quality criteria for service selection, such as service cost vs. the reliability of provision, is empirically evaluated based on a multi-agent platform approach
    • …
    corecore