46,972 research outputs found
A Danish Profiling System
We describe the statistical model used for profiling new unemployed workers in Denmark. When a worker - during his or her first six months in unemployment - enters the employment office for the first time, this model predicts whether he or she will be unemployed for more than six months from that date or not. The case workers’ assessment of how to treat the person is partially based upon this prediction.unemployment duration; profiling
RPPM : Rapid Performance Prediction of Multithreaded workloads on multicore processors
Analytical performance modeling is a useful complement to detailed cycle-level simulation to quickly explore the design space in an early design stage. Mechanistic analytical modeling is particularly interesting as it provides deep insight and does not require expensive offline profiling as empirical modeling. Previous work in mechanistic analytical modeling, unfortunately, is limited to single-threaded applications running on single-core processors.
This work proposes RPPM, a mechanistic analytical performance model for multi-threaded applications on multicore hardware. RPPM collects microarchitecture-independent characteristics of a multi-threaded workload to predict performance on a previously unseen multicore architecture. The profile needs to be collected only once to predict a range of processor architectures. We evaluate RPPM's accuracy against simulation and report a performance prediction error of 11.2% on average (23% max). We demonstrate RPPM's usefulness for conducting design space exploration experiments as well as for analyzing parallel application performance
Activities recognition and worker profiling in the intelligent office environment using a fuzzy finite state machine
Analysis of the office workers’ activities of daily working in an intelligent office environment can be used to optimize energy consumption and also office workers’ comfort. To achieve this end, it is essential to recognise office workers’ activities including short breaks, meetings and non-computer activities to allow an optimum control strategy to be implemented. In this paper, fuzzy finite state machines are used to model an office worker’s behaviour. The model will incorporate sensory data collected from the environment as the input and some pre-defined fuzzy states are used to develop the model. Experimental results are presented to illustrate the effectiveness of this approach. The activity models of different individual workers as inferred from the sensory devices can be distinguished. However, further investigation is required to create a more complete model
Garbage collection auto-tuning for Java MapReduce on Multi-Cores
MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests
GiViP: A Visual Profiler for Distributed Graph Processing Systems
Analyzing large-scale graphs provides valuable insights in different
application scenarios. While many graph processing systems working on top of
distributed infrastructures have been proposed to deal with big graphs, the
tasks of profiling and debugging their massive computations remain time
consuming and error-prone. This paper presents GiViP, a visual profiler for
distributed graph processing systems based on a Pregel-like computation model.
GiViP captures the huge amount of messages exchanged throughout a computation
and provides an interactive user interface for the visual analysis of the
collected data. We show how to take advantage of GiViP to detect anomalies
related to the computation and to the infrastructure, such as slow computing
units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
On data skewness, stragglers, and MapReduce progress indicators
We tackle the problem of predicting the performance of MapReduce
applications, designing accurate progress indicators that keep programmers
informed on the percentage of completed computation time during the execution
of a job. Through extensive experiments, we show that state-of-the-art progress
indicators (including the one provided by Hadoop) can be seriously harmed by
data skewness, load unbalancing, and straggling tasks. This is mainly due to
their implicit assumption that the running time depends linearly on the input
size. We thus design a novel profile-guided progress indicator, called
NearestFit, that operates without the linear hypothesis assumption and exploits
a careful combination of nearest neighbor regression and statistical curve
fitting techniques. Our theoretical progress model requires fine-grained
profile data, that can be very difficult to manage in practice. To overcome
this issue, we resort to computing accurate approximations for some of the
quantities used in our model through space- and time-efficient data streaming
algorithms. We implemented NearestFit on top of Hadoop 2.6.0. An extensive
empirical assessment over the Amazon EC2 platform on a variety of real-world
benchmarks shows that NearestFit is practical w.r.t. space and time overheads
and that its accuracy is generally very good, even in scenarios where
competitors incur non-negligible errors and wide prediction fluctuations.
Overall, NearestFit significantly improves the current state-of-art on progress
analysis for MapReduce
- …
