24,604 research outputs found

    The fractal urban coherence in biourbanism: the factual elements of urban fabric

    Get PDF
    This article is available online and will be inserted in also printed format in the Journal in October 2013.During the last few decades, modern urban fabric lost some very important elements, only because urban design and planning turned out to be stylistic aerial views or new landscapes of iconic technological landmarks. Biourbanism attempts to re-establish lost values and balance, not only in urban fabric, but also in reinforcing human-oriented design principles in either micro or macro scale. Biourbanism operates as a catalyst of theories and practices in both architecture and urban design to guarantee high standards in services, which are currently fundamental to the survival of communities worldwide. Human life in cities emerges during connectivity via geometrical continuity of grids and fractals, via path connectivity among highly active nodes, via exchange/movement of people and, finally via exchange of information (networks). In most human activities taking place in central areas of cities, people often feel excluded from design processes in the built environment. This paper aims at exploring the reasons for which, fractal cities, which have being conceived as symmetries and patterns, can have scientifically proven and beneficial impact on human fitness of body and mind; research has found that, brain traumas caused by visual agnosia become evident when patterns disappear from either 2D or 3D emergences in architectural and urban design.ADT Fund

    A new paradigm for deep sustainability: biourbanism

    Get PDF
    Biourbanism introduces new conceptual and planning models for a new kind of city, valuing social and economical regeneration of the built environment through developing and healthy communities. Thus, it combines technical aspects, such as zero-emission, energy efficiency, information technology, etc. and the promotion of social sustainability and human well being. In effect, this new paradigm endorses principles of geometrical coherence, Biophilic design, BioArchitecture, Biomimesis, etc. in practices of design and also new urban policies and, especially Biopolitics to promote urban revitalization by ensuring that man-made changes do not have harmful effects to humans. Green city standards start inside the designs of each building and continue either in unbuilt spaces surrounding buildings or inside complex infrastructural networks, connecting buildings and people. The proposed presentation should illustrate how new exciting developments recently, such as fractals, complexity theory, evolutionary biology and artificial intelligence are interrelated and constantly stimulate interaction between human beings and the surrounding environment. New Biophilic solutions in designs of buildings have been proved as attractive opportunities for new markets of housing. Thus, some new infrastructural projects start embracing Biophilic advanced solutions which finally aim at energy efficiency and optimal performance. As parallel activity we can now see emerging new innovative monitoring systems of building health not only in small scale, but also in large scale buildings, such as rail stations, for example, and commercial centres or even sometimes entire educational complexes integrated to new infrastructural projects. Some important case studies are going to be presented; they have been analysed and evaluated by Biourbanism and Biophilia principles and applied methods of design

    Complexity and biourbanism: thermodynamical architectural and urban models integrated in modern geographic mapping

    Get PDF
    The paper was presented on 5th April 2012 by Eleni Tracada in Theoretical Currents II conference in the University of Lincoln.Abstract Vital elements in urban fabric have been often suppressed for reasons of ‘style’. Recent theories, such as Biourbanism, suggest that cities risk becoming unstable and deprived of healthy social interactions. Our paper aims at exploring the reasons for which, fractal cities, which have being conceived as symmetries and patterns, can have scientifically proven and beneficial impact on human fitness of body and mind. During the last few decades, modern urban fabric lost some very important elements, only because urban design and planning turned out to be stylistic aerial views or new landscapes of iconic technological landmarks. Biourbanism attempts to re-establish lost values and balance, not only in urban fabric, but also in reinforcing human-oriented design principles in either micro or macro scale. Human life in cities and beyond emerges during ‘connectivity’ via geometrical continuity of grids and fractals, via path connectivity among highly active nodes, via exchange/movement of people and, finally via exchange of information (networks). All these elements form a hypercomplex system of several interconnected layers of a dynamic structure, all influencing each other in a non-linear manner. Sometimes networks of communication at all levels may suffer from sudden collapse of dynamic patterns, which have been proved to be vital for a long time either to landscapes and cityscapes. We are now talking about negotiating boundaries between human activities, changes in geographic mapping and, mainly about sustainable systems to support continuous growth of communities. We are not only talking about simple lives (‘Bios’) as Urban Syntax (bio and socio-geometrical synthesis), but also about affinities between developing topographies created by roadways and trajectories and the built environment. We shall also have the opportunity to show recent applications of these theories in our postgraduate students’ work, such as a 3D model as a new method of cartography of the Island of Mauritius, with intend to highlight developments in topography and architecture through a series of historical important events and mutating socio-political and economical geographies. This model may be able to predict failures in proposed and/or activated models of expansion, which do not follow strictly morphogenetic and physiological design processes. The same kind of modelling is capable to enable recognition of ‘optimal forms’ at different feedback scales, which, through morphogenetic processes, guarantee an optimal systemic efficiency, and therefore quality of life.ADT funds, university of Derby

    A survey of parallel algorithms for fractal image compression

    Get PDF
    This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm

    On environments as systemic exoskeletons: Crosscutting optimizers and antifragility enablers

    Full text link
    Classic approaches to General Systems Theory often adopt an individual perspective and a limited number of systemic classes. As a result, those classes include a wide number and variety of systems that result equivalent to each other. This paper introduces a different approach: First, systems belonging to a same class are further differentiated according to five major general characteristics. This introduces a "horizontal dimension" to system classification. A second component of our approach considers systems as nested compositional hierarchies of other sub-systems. The resulting "vertical dimension" further specializes the systemic classes and makes it easier to assess similarities and differences regarding properties such as resilience, performance, and quality-of-experience. Our approach is exemplified by considering a telemonitoring system designed in the framework of Flemish project "Little Sister". We show how our approach makes it possible to design intelligent environments able to closely follow a system's horizontal and vertical organization and to artificially augment its features by serving as crosscutting optimizers and as enablers of antifragile behaviors.Comment: Accepted for publication in the Journal of Reliable Intelligent Environments. Extends conference papers [10,12,15]. The final publication is available at Springer via http://dx.doi.org/10.1007/s40860-015-0006-

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Distributed processing of a fractal array beamformer

    Get PDF
    Fractals have been proven as potential candidates for satellite flying formations, where its different elements represent a thinned array. The distributed and low power nature of the nodes in this network motivates distributed processing when using such an array as a beamformer. This paper proposes such initial idea, and demonstrates that benefits such as strictly limited local processing capability independent of the array’s dimension and local calibration can be bought at the expense of a slightly increased overall cost
    • 

    corecore