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Abstract. Fractals have been proven as potential candidates for satellite flying formations, where its different elements

represent a thinned array. The distributed and low power nature of the nodes in this network motivates distributed processing

when using such an array as a beamformer. This paper proposes such initial idea, and demonstrates that benefits such as

strictly limited local processing capability independent of the array’s dimension and local calibration can be bought at the

expense of a slightly increased overall cost.

1. Introduction

Recent work established a Purina fractal geometry as a forma-

tion of fractionated spacecraft as an alternative to larger satel-

lites [1,2]. Additionally, the Purina fractal’s structural sparse-

ness combines a significant aperture and therefore resolution

while avoiding spatial aliasing as long as at least some sen-

sors are sufficiently closely located [3–6], thus offering advan-

tages that otherwise have to be achieved through thinning of

arrays [7,8].

In order to exploit the fractionated nature of a satellite as

proposed in [2], we aim to mirror its fractal structure in the

processing architecture, since the lack of a central process-

ing node motivates the design of a distributed beamformer.

In the past such efforts have e.g. concentrated on the dis-

tributed estimation of the covariance matrix [9], distributed

signal enhancement with bandwidth constraints [10] or the use

of factor graphs [11] and specifically Pearl’s algorithm [12],

which could lead to the implementation of general algorithms

in a distributed fashion. Some distributed algorithms have also

been developed for spatially separated subarrays [13,14] with

the main emphasis on the iterative approximation of jointly

optimal results.

Our aim here is to use a hierarchical distributed processing

structure which closely mirrors the fractal architecture of

the array. In particular, we propose to use nested subarrays,

whereby a subarray takes the shape of the generating frac-

tal. The beamformer output can be hierarchically computed

such that, independent of the dimension of the Purina array,

the number of computations per node are strictly limited,

even though the overall number of computations is slightly

increased compared to directly processing the samples col-

lected by all sensors.

Below, we first review characteristics and the generation of the

Purina fractal array in Sec. 2.. The beamformer output, its qui-

escent response, and its distributed computation are outlined

in Sec. 3., while some results and discussions are provided in

(a) (b) (c)

Figure 1. First three stages of growth of the Purina fractal array for (a) P= 1,

(b) P = 2, and (c) P = 3.

Sec. 4.. Finally, conclusions are drawn in Sec. 5..

2. Purina Fractal Array

2.1 Purina Array Generation

The Purina fractal pattern yields a thinned 3-by-3 symmetric

planar array, which at growth stage P = 1 has the simple sub-

array S1

S1 =





1 0 1

0 1 0

1 0 1



 , (1)

also referred to as the generating array. Higher growth stages

P ∈ N, P > 1 are defined recursively by

SP = S1 ⊗SP−1 , (2)

with ⊗ denoting the Kronecker product, whereby a unit entry

means that an element is switched on, while zero indicates that

the array element is switched off. Fig. 1 demonstrates the first

three stages of growth for the Purina fractal array.

2.2 Hierarchy and Labelling

For the analysis below, we will organise sensors according to

their fractal scale, p ∈ Z, p ≤ P, which describes the differ-

ent hierarchical layers of the architecture up to the full growth
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Figure 2. Nested labelling of array elements at fractal scale p = 1 with sensor locations rk , fractal scale p = 2 with locations rk,l , and fractal scale p = 3 with

locations rk,l,m, with k, l,m ∈ {1 . . .5}.

stage P. The elements at the coarsest level, p = 1, are given a

single index, elements at fractal scale p= 2 a double index, and

so on, until the elements at the finest scale p = P are labelled

using P subscripts. For the three coarsest levels of a Purina

fractal array, an example is provided in Fig. 2. Note that in gen-

eral,

rk,l,...,r,q,1 = rk,l,...,r,q , (3)

and in particular

r1,1,...,1,1 = r1,1,...,1 = · · ·= r1 . (4)

Using these sensor locations, below we will be able to define

a distributed beamforming system exploiting the fractal scale

structure of the Purina array, by labelling the narrowband

beamforming coefficient and the data sample collected at time

instance n in the sensor location denoted by a vector rk,l,...,p,q

as wk,l,...,p,q and xk,l,...,p,q[n], respectively.

3. Distributed Beamformer

This section derives a beamformer formulation for using dis-

tributed processing of inputs based on the definition of the

beamformer output in Sec. 3.1 and its coefficients for the qui-

escent case in Sec. 3.2. A restructuring of the equations in

Sec. 3.3 yields a formulation with a slightly increased cost,

which however allows to calibrate information that is only

available within subarrays.

3.1 Beamformer Output

The overall beamformer response is given by

y[n] = wHx[n] (5)

=
5

∑
uP=1

· · ·
5

∑
u2=1

5

∑
u1=1

︸ ︷︷ ︸

P terms

wuP,...u2,u1
xuP,...,u2,u1

[n] , (6)

whereby w and x[n] are the stacked coefficient and data vectors

at time n, {·}H denotes Hermitian transpose. The computations

that are required for one output sample y[n] are constituted by

5P multiply-accumulate operation, that would under normal

circumstances be executed in a central processing node. Inter-

estingly, the nesting of the summation terms in (6) provides a

natural hierarchy in calculating the output, whereby intermedi-

ate outputs of nested subarrays are defined as

y[n] =
5

∑
uP=1

yuP
[n] (7)

...

=
5

∑
uP=1

· · ·
5

∑
u2=1

yuP,...,u2
[n] (8)

=
5

∑
uP=1

· · ·
5

∑
u2=1

5

∑
u1=1

yuP,...,u2,u1
[n] . (9)

The quantities under the sum on the r.h.s. of (9) denote the out-

put of subarrays at different fractal scales of the array, such

that yP[n] are the outputs at the 5 nodes at the coarsest level as

shown on the left side of Fig. 2, and outputs with an increas-

ing number of subscripts refer to intermediate outputs at finer

fractal scales.

3.2 Quiescent Beamformer Coefficients

Assuming a far field source at a narrowband frequency f which

arrives at the array as a planar wave front with normal vector k,

kϕ,ϑ =





cosϕ sin ϑ
sinϕ sinϑ

cosϑ



 , (10)

i.e. with azimuth ϕ and elevation angle ϑ , the relative time

delay τuP,...u2,u1
experienced at location ruP,...,u2,u1

relative to

the centre element at r1 is given by

τuP,...,u2,u1
=

1

c
kT

ϕ,ϑ (ruP,...,u2,u1
− r1) (11)

with c denoting the propagation speed in the medium. The

quantity kϕ,ϑ/c is also known as the slowness vector of the

source.

Given a sampling rate fs, the narrowband source is charac-
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terised by a steering vector sϕ,ϑ ,

sϕ,ϑ =













e− jΩτ1,...,1,1

...

e− jΩτ1,...,1,5

e− jΩτ1,...,2,1

...

e− jΩτ5,...,5,5













, (12)

with Ω = 2π f/ fs. For the quiescent case, (12) defines the opti-

mum filter coefficients w = s∗ϕ,ϑ , i.e. the matched filter, in the

mean square error sense.

3.3 Distributed Processing with Local Calibration

On the finest fractal scale, different from (11) we define the

time shift relative to the centre of a subarray,

τ̃uP,...,u2,u1
=

1

c
kT

ϕ,ϑ (ruP,...,u2,u1
− ruP,...,u2

) . (13)

Therefore, 5P−1 steering vectors s̃uP,...,u2|ϕ,ϑ ∈ C5,

s̃uP,...,u2|ϕ,ϑ =








1

e− jΩτ̃uP,...,u2,2

...

e
− jΩτ̃uP,...,u2,5








(14)

emerge at the finest scale. The time delays can therefore be

adjusted based on local knowledge of the actual locations

ruP,...,u2,u1
within each subarray.

At the next coarser level, 5P−2 groups of steering vectors

s̃uP,...,u3|ϕ,ϑ ∈ C25 are assembled by weighting contributions

of the sub-steering vectors in (14). This weighting reflects the

calibration w.r.t. the time difference at this fractal scale,

s̃uP,...,u3|ϕ,ϑ =








s̃uP,...,u3,1|ϕ,ϑ

e
− jΩτ̃uP ,...,u3,2 s̃uP,...,u3,2|ϕ,ϑ

...

e
− jΩτ̃uP ,...,u3,5 s̃uP,...,u3,5|ϕ,ϑ








, (15)

whereby the time delays τ̃uP,...,u3,u2
represent calibrations

w.r.t. the central nodes of the next finer fractal scale,

τ̃uP,...,u3,u2
=

1

c
kT

ϕ,ϑ (ruP,...,u3,u2
− ruP,...,u3

) . (16)

The process of (14) and (15) can be iterated until the coarsest

fractal scale p = 1 is reached.

At the coarsest fractal scale p= 1, finally the complete steering

vector

sϕ,ϑ =








s̃1|ϕ,ϑ

e− jΩτ̃2 s̃2|ϕ,ϑ
...

e− jΩτ̃5 s̃5|ϕ,ϑ








, (17)
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Figure 3. Complexity for standard (C) and distributed processing (C̃) as a

function of the growth stage P.

with

τ̃up =
1

c
kT

ϕ,ϑ (ruP
− r1) (18)

is obtained, which matches the original steering vector sϕ,ϑ ∈

C
5P

in (12).

The computational structure in calculating the output (9) can

be performed to match the nested iterative structure of steering

vectors presented by (14), (15) and (17). At the finest scale,

outputs ỹuP,...,u3,u2
[n] are determined as

ỹuP,...,u3,u2
[n] =

5

∑
u1=1

w̃uP,...,u2,u1
· xuP,...,u2,u1

[n] , (19)

with the coefficients w̃uP,...,u2,u1
matched to the modified steer-

ing vectors s̃uP,...,u2|ϕ,ϑ in (14). From this finest level upwards,

at each fractal scale phase corrections as in (15) and (17) are

applied when adding up outputs in a divide-and-conquer fash-

ion to finally reach y[n] at the coarsest fractal scale.

4. Discussion, Simulations and Results

4.1 Computational Complexity

The complexity of the direct formulation in (6) via a scalar

product requires C = 5P multiply-accumulates, which might

need to be afforded in a central processing node, where data,

weights, and any calibration for displaced sensors might be

required. For the proposed computational structure in Sec. 3.3,

the hierachical processing structure requires a total of

C̃ =
P

∑
p=1

5p >C . (20)

However, for sufficiently large P, the relative difference

between C̃ and C diminishes as shown in Fig. 3, since both

approaches possess a complexity of order O(5P). However,

for the distributed approach, the requirement of not more than

5 multiply-accumulate operations per sensor node — indepen-

dent of P — emerges as a major benefit. Also, the distributed
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Figure 4. Quiescent beampatterns of Purina array for different growth stages

P = 1, 2, 3 and 4, assuming that in each case the array elements’ minimum

spacing satisfies spatial sampling.
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Figure 5. Detail view of Fig. 4, showing the main beam for P = 1 and the

iterative inscribed characteristics for finer fractal scaled Purina fractal arrays.

structure is easier to calibrate, as dislocations of sensors only

have to be known at the local subarray level, which matches

the control strategy for flying a Purina array in formation, as

outlined in [3].

4.2 Beampatterns

A number of sample beampatterns for the Purina array beam-

former are shown in Figs. 4 and 5. These beampatterns emerge

from a beamformer DP(ϑ ,ϕ) matched to receive a signal from

broadside, ϑ = 0◦, and are calculated by probing the array with

a set of steering vectors sϕ,ϑ as defined in (12) for variable ele-
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Figure 6. Quiescent beampatterns of Purina array adjusted to sample cor-

rectly with growth stage P = 4, while processing of finer fractal scales for

p = 1, 2, and 3 operate on a subsampled array.
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Figure 7. Detail view of Fig. 6, showing the main beam for P = 4 and the

iterative inscribed characteristics for coarser fractal scales of the Purina arrays.

vation ϑ ,

DP(ϑ ,ϕ) = wHsϕ,ϑ . (21)

The azimuth is in this case set to zero, ϕ = 0◦. Since for every

value of P, the minimum distance between array elements is

set to fulfil correct spatial sampling, no aliasing occurs, and

an increase in P corresponds to an increase in resolution as

characterised by the narrowing beamwidth at ϑ = 0◦, and

lower sidelobe levels. Note that the fractal structure of the

array results in “inscribed” or majorised beampatterns where

|DP+1(ϑ ,ϕ)|< |DP(ϑ ,ϕ)|∀ϑ ,ϕ ,P.

For illustration purposes, Figs. 6 and 7 show a Purina array

with element distances adjusted to satisfy correct spatial sam-
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pling for the case P = 4, with the beam pattern matching the

ones shown in Figs 4 and 5. If only coarser fractal scales p < P

are processed, subarrays are spatially subsampled and spatial

aliasing can be noticed. Interestingly, again the fractal struc-

ture of the array results in majorised beampatterns.

5. Conclusions

We have considered distributed processing for a Purina frac-

tal array, which emerges from a generating subarray to reach a

growth stage P over a number of fractal scales p = 1 . . .P. The

considered processing consisted of the calculation of a beam-

former output, which can exploit the fractal structure to define

the distributed processing architecture. As a simple example,

we have assumed a quiescent beamformer, which is optimal

in a scenario where a single source is embedded in isotropic

noise.

The advantages of the discussed processing architecture lie in

the fixed maximum complexity per node in the distributed pro-

cedure. In addition to limiting the processing power, transmit

power is conserved through short hops. Further, the distributed

approach matches the position control strategy of the Purina

array for formation flying, and allows to consider calibration

information in the form of locally known dislocation of sensor

elements when computing the beamformer output.
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