5,393 research outputs found

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft

    Graph Spectral Properties of Deterministic Finite Automata

    Full text link
    We prove that a minimal automaton has a minimal adjacency matrix rank and a minimal adjacency matrix nullity using equitable partition (from graph spectra theory) and Nerode partition (from automata theory). This result naturally introduces the notion of matrix rank into a regular language L, the minimal adjacency matrix rank of a deterministic automaton that recognises L. We then define and focus on rank-one languages: the class of languages for which the rank of minimal automaton is one. We also define the expanded canonical automaton of a rank-one language.Comment: This paper has been accepted at the following conference: 18th International Conference on Developments in Language Theory (DLT 2014), August 26 - 29, 2014, Ekaterinburg, Russi

    On an algorithm to decide whether a free group is a free factor of another

    Get PDF
    We revisit the problem of deciding whether a finitely generated subgroup H is a free factor of a given free group F. Known algorithms solve this problem in time polynomial in the sum of the lengths of the generators of H and exponential in the rank of F. We show that the latter dependency can be made exponential in the rank difference rank(F) - rank(H), which often makes a significant change.Comment: 20 page

    Digraph Complexity Measures and Applications in Formal Language Theory

    Full text link
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur

    Preimage problems for deterministic finite automata

    Full text link
    Given a subset of states SS of a deterministic finite automaton and a word ww, the preimage is the subset of all states mapped to a state in SS by the action of ww. We study three natural problems concerning words giving certain preimages. The first problem is whether, for a given subset, there exists a word \emph{extending} the subset (giving a larger preimage). The second problem is whether there exists a \emph{totally extending} word (giving the whole set of states as a preimage)---equivalently, whether there exists an \emph{avoiding} word for the complementary subset. The third problem is whether there exists a \emph{resizing} word. We also consider variants where the length of the word is upper bounded, where the size of the given subset is restricted, and where the automaton is strongly connected, synchronizing, or binary. We conclude with a summary of the complexities in all combinations of the cases

    On groups and counter automata

    Full text link
    We study finitely generated groups whose word problems are accepted by counter automata. We show that a group has word problem accepted by a blind n-counter automaton in the sense of Greibach if and only if it is virtually free abelian of rank n; this result, which answers a question of Gilman, is in a very precise sense an abelian analogue of the Muller-Schupp theorem. More generally, if G is a virtually abelian group then every group with word problem recognised by a G-automaton is virtually abelian with growth class bounded above by the growth class of G. We consider also other types of counter automata.Comment: 18 page
    corecore