60,817 research outputs found

    Words, concepts, and the geometry of analogy

    Get PDF
    In Proceedings SLPCS 2016, arXiv:1608.01018In Proceedings SLPCS 2016, arXiv:1608.01018In Proceedings SLPCS 2016, arXiv:1608.01018© S. McGregor, M. Purver & G. Wiggins. This paper presents a geometric approach to the problem of modelling the relationship between words and concepts, focusing in particular on analogical phenomena in language and cognition. Grounded in recent theories regarding geometric conceptual spaces, we begin with an analysis of existing static distributional semantic models and move on to an exploration of a dynamic approach to using high dimensional spaces of word meaning to project subspaces where analogies can potentially be solved in an online, contextualised way. The crucial element of this analysis is the positioning of statistics in a geometric environment replete with opportunities for interpretation

    Means or end? On the Valuation of Logic Diagrams

    Get PDF
    From the beginning of the 16th century to the end of the 18th century, there were not less than ten philosophers who focused extensively on Venn’s ostensible analytical diagrams, as noted by modern historians of logic (Venn, Gardner, Baron, Coumet et al.). But what was the reason for early modern philosophers to use logic or analytical diagrams? Among modern historians of logic one can find two theses which are closely connected to each other: M. Gardner states that since the Middle Ages certain logic diagrams were used just in order to teach “dull-witted students”. Therefore, logic diagrams were just a means to an end. According to P. Bernhard, the appreciation of logic diagrams had not started prior to the 1960s, therefore the fact that logic diagrams become an end the point of research arose very late. The paper will focus on the question whether logic resp. analytical diagrams were just means in the history of (early) modern logic or not. In contrast to Gardner, I will argue that logic diagrams were not only used as a tool for “dull-witted students”, but rather as a tool used by didactic reformers in early modern logic. In predating Bernhard’s thesis, I will argue that in the 1820s logic diagrams had already become a value in themselves in Arthur Schopenhauer’s lectures on logic, especially in proof theory

    Renormalization Group and Quantum Information

    Get PDF
    The renormalization group is a tool that allows one to obtain a reduced description of systems with many degrees of freedom while preserving the relevant features. In the case of quantum systems, in particular, one-dimensional systems defined on a chain, an optimal formulation is given by White's "density matrix renormalization group". This formulation can be shown to rely on concepts of the developing theory of quantum information. Furthermore, White's algorithm can be connected with a peculiar type of quantization, namely, angular quantization. This type of quantization arose in connection with quantum gravity problems, in particular, the Unruh effect in the problem of black-hole entropy and Hawking radiation. This connection highlights the importance of quantum system boundaries, regarding the concentration of quantum states on them, and helps us to understand the optimal nature of White's algorithm.Comment: 16 pages, 5 figures, accepted in Journal of Physics

    An Arithmetization of Logical Oppositions

    Get PDF
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers

    Einstein-Cartan theory as a theory of defects in space-time

    Full text link
    The Einstein-Cartan theory of gravitation and the classical theory of defects in an elastic medium are presented and compared. The former is an extension of general relativity and refers to four-dimensional space-time, while we introduce the latter as a description of the equilibrium state of a three-dimensional continuum. Despite these important differences, an analogy is built on their common geometrical foundations, and it is shown that a space-time with curvature and torsion can be considered as a state of a four-dimensional continuum containing defects. This formal analogy is useful for illustrating the geometrical concept of torsion by applying it to concrete physical problems. Moreover, the presentation of these theories using a common geometrical basis allows a deeper understanding of their foundations.Comment: 18 pages, 7 EPS figures, RevTeX4, to appear in the American Journal of Physics, revised version with typos correcte
    • …
    corecore