17,224 research outputs found

    A fine-grained approach to scene text script identification

    Full text link
    This paper focuses on the problem of script identification in unconstrained scenarios. Script identification is an important prerequisite to recognition, and an indispensable condition for automatic text understanding systems designed for multi-language environments. Although widely studied for document images and handwritten documents, it remains an almost unexplored territory for scene text images. We detail a novel method for script identification in natural images that combines convolutional features and the Naive-Bayes Nearest Neighbor classifier. The proposed framework efficiently exploits the discriminative power of small stroke-parts, in a fine-grained classification framework. In addition, we propose a new public benchmark dataset for the evaluation of joint text detection and script identification in natural scenes. Experiments done in this new dataset demonstrate that the proposed method yields state of the art results, while it generalizes well to different datasets and variable number of scripts. The evidence provided shows that multi-lingual scene text recognition in the wild is a viable proposition. Source code of the proposed method is made available online

    Word Searching in Scene Image and Video Frame in Multi-Script Scenario using Dynamic Shape Coding

    Full text link
    Retrieval of text information from natural scene images and video frames is a challenging task due to its inherent problems like complex character shapes, low resolution, background noise, etc. Available OCR systems often fail to retrieve such information in scene/video frames. Keyword spotting, an alternative way to retrieve information, performs efficient text searching in such scenarios. However, current word spotting techniques in scene/video images are script-specific and they are mainly developed for Latin script. This paper presents a novel word spotting framework using dynamic shape coding for text retrieval in natural scene image and video frames. The framework is designed to search query keyword from multiple scripts with the help of on-the-fly script-wise keyword generation for the corresponding script. We have used a two-stage word spotting approach using Hidden Markov Model (HMM) to detect the translated keyword in a given text line by identifying the script of the line. A novel unsupervised dynamic shape coding based scheme has been used to group similar shape characters to avoid confusion and to improve text alignment. Next, the hypotheses locations are verified to improve retrieval performance. To evaluate the proposed system for searching keyword from natural scene image and video frames, we have considered two popular Indic scripts such as Bangla (Bengali) and Devanagari along with English. Inspired by the zone-wise recognition approach in Indic scripts[1], zone-wise text information has been used to improve the traditional word spotting performance in Indic scripts. For our experiment, a dataset consisting of images of different scenes and video frames of English, Bangla and Devanagari scripts were considered. The results obtained showed the effectiveness of our proposed word spotting approach.Comment: Multimedia Tools and Applications, Springe

    Sequence to Sequence -- Video to Text

    Full text link
    Real-world videos often have complex dynamics; and methods for generating open-domain video descriptions should be sensitive to temporal structure and allow both input (sequence of frames) and output (sequence of words) of variable length. To approach this problem, we propose a novel end-to-end sequence-to-sequence model to generate captions for videos. For this we exploit recurrent neural networks, specifically LSTMs, which have demonstrated state-of-the-art performance in image caption generation. Our LSTM model is trained on video-sentence pairs and learns to associate a sequence of video frames to a sequence of words in order to generate a description of the event in the video clip. Our model naturally is able to learn the temporal structure of the sequence of frames as well as the sequence model of the generated sentences, i.e. a language model. We evaluate several variants of our model that exploit different visual features on a standard set of YouTube videos and two movie description datasets (M-VAD and MPII-MD).Comment: ICCV 2015 camera-ready. Includes code, project page and LSMDC challenge result

    Automatic Content Generation for Video Self Modeling

    Get PDF
    Video self modeling (VSM) is a behavioral intervention technique in which a learner models a target behavior by watching a video of him or herself. Its effectiveness in rehabilitation and education has been repeatedly demonstrated but technical challenges remain in creating video contents that depict previously unseen behaviors. In this paper, we propose a novel system that re-renders new talking-head sequences suitable to be used for VSM treatment of patients with voice disorder. After the raw footage is captured, a new speech track is either synthesized using text-to-speech or selected based on voice similarity from a database of clean speeches. Voice conversion is then applied to match the new speech to the original voice. Time markers extracted from the original and new speech track are used to re-sample the video track for lip synchronization. We use an adaptive re-sampling strategy to minimize motion jitter, and apply bilinear and optical-flow based interpolation to ensure the image quality. Both objective measurements and subjective evaluations demonstrate the effectiveness of the proposed techniques

    Automatic Video Self Modeling for Voice Disorder

    Get PDF
    Video self modeling (VSM) is a behavioral intervention technique in which a learner models a target behavior by watching a video of him- or herself. In the field of speech language pathology, the approach of VSM has been successfully used for treatment of language in children with Autism and in individuals with fluency disorder of stuttering. Technical challenges remain in creating VSM contents that depict previously unseen behaviors. In this paper, we propose a novel system that synthesizes new video sequences for VSM treatment of patients with voice disorders. Starting with a video recording of a voice-disorder patient, the proposed system replaces the coarse speech with a clean, healthier speech that bears resemblance to the patient’s original voice. The replacement speech is synthesized using either a text-to-speech engine or selecting from a database of clean speeches based on a voice similarity metric. To realign the replacement speech with the original video, a novel audiovisual algorithm that combines audio segmentation with lip-state detection is proposed to identify corresponding time markers in the audio and video tracks. Lip synchronization is then accomplished by using an adaptive video re-sampling scheme that minimizes the amount of motion jitter and preserves the spatial sharpness. Results of both objective measurements and subjective evaluations on a dataset with 31 subjects demonstrate the effectiveness of the proposed techniques
    • 

    corecore