35,269 research outputs found

    Invited Talk: Word Sense Induction for Machine Translation

    Get PDF

    FASTSUBS: An Efficient and Exact Procedure for Finding the Most Likely Lexical Substitutes Based on an N-gram Language Model

    Full text link
    Lexical substitutes have found use in areas such as paraphrasing, text simplification, machine translation, word sense disambiguation, and part of speech induction. However the computational complexity of accurately identifying the most likely substitutes for a word has made large scale experiments difficult. In this paper I introduce a new search algorithm, FASTSUBS, that is guaranteed to find the K most likely lexical substitutes for a given word in a sentence based on an n-gram language model. The computation is sub-linear in both K and the vocabulary size V. An implementation of the algorithm and a dataset with the top 100 substitutes of each token in the WSJ section of the Penn Treebank are available at http://goo.gl/jzKH0.Comment: 4 pages, 1 figure, to appear in IEEE Signal Processing Letter

    Capturing lexical variation in MT evaluation using automatically built sense-cluster inventories

    Get PDF
    The strict character of most of the existing Machine Translation (MT) evaluation metrics does not permit them to capture lexical variation in translation. However, a central issue in MT evaluation is the high correlation that the metrics should have with human judgments of translation quality. In order to achieve a higher correlation, the identification of sense correspondences between the compared translations becomes really important. Given that most metrics are looking for exact correspondences, the evaluation results are often misleading concerning translation quality. Apart from that, existing metrics do not permit one to make a conclusive estimation of the impact of Word Sense Disambiguation techniques into MT systems. In this paper, we show how information acquired by an unsupervised semantic analysis method can be used to render MT evaluation more sensitive to lexical semantics. The sense inventories built by this data-driven method are incorporated into METEOR: they replace WordNet for evaluation in English and render METEOR’s synonymy module operable in French. The evaluation results demonstrate that the use of these inventories gives rise to an increase in the number of matches and the correlation with human judgments of translation quality, compared to precision-based metrics

    Integrating Weakly Supervised Word Sense Disambiguation into Neural Machine Translation

    Full text link
    This paper demonstrates that word sense disambiguation (WSD) can improve neural machine translation (NMT) by widening the source context considered when modeling the senses of potentially ambiguous words. We first introduce three adaptive clustering algorithms for WSD, based on k-means, Chinese restaurant processes, and random walks, which are then applied to large word contexts represented in a low-rank space and evaluated on SemEval shared-task data. We then learn word vectors jointly with sense vectors defined by our best WSD method, within a state-of-the-art NMT system. We show that the concatenation of these vectors, and the use of a sense selection mechanism based on the weighted average of sense vectors, outperforms several baselines including sense-aware ones. This is demonstrated by translation on five language pairs. The improvements are above one BLEU point over strong NMT baselines, +4% accuracy over all ambiguous nouns and verbs, or +20% when scored manually over several challenging words.Comment: To appear in TAC

    An algorithm for cross-lingual sense-clustering tested in a MT evaluation setting

    Get PDF
    Unsupervised sense induction methods offer a solution to the problem of scarcity of semantic resources. These methods automatically extract semantic information from textual data and create resources adapted to specific applications and domains of interest. In this paper, we present a clustering algorithm for cross-lingual sense induction which generates bilingual semantic inventories from parallel corpora. We describe the clustering procedure and the obtained resources. We then proceed to a large-scale evaluation by integrating the resources into a Machine Translation (MT) metric (METEOR). We show that the use of the data-driven sense-cluster inventories leads to better correlation with human judgments of translation quality, compared to precision-based metrics, and to improvements similar to those obtained when a handcrafted semantic resource is used

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc
    corecore