21 research outputs found

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.Wortrepräsentationen, sogenannte Word Embeddings, sind generische Repräsentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nächsten Nachbarn. Viele Probleme der Computerlinguistik können durch Wortrepräsentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den Wortrepräsentationen enthalten sind. In der ersten Publikation untersuchen wir überwachte, graphenbasierte Methodenn um Wortrepräsentationen zu erzeugen. Diese Methoden führen zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, für welches zwei äquivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne Knotenähnlichkeiten effektiv berechnen, da graphenbasierte Wortrepräsentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende Wortrepräsentationen und kombinieren diese mit semantischen Ressourcen, indem wir Repräsentationen für Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und Entitäten. Die Flexibilität unserer Methode zeichnet sich dadurch aus, dass wir beliebige Wortrepräsentationen als Eingabe verwenden können und keinen zusätzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der Wortrepräsentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten Repräsentationen zur Erstellung von Wörterbüchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und Häufigkeit. Die letzte Publikation präsentiert eine neue Rechenmethode für die interpretierbaren ultra-kompakten Untervektorräume -- Stimmung, Konkretheit, Häufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort für Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.Wortrepräsentationen, sogenannte Word Embeddings, sind generische Repräsentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nächsten Nachbarn. Viele Probleme der Computerlinguistik können durch Wortrepräsentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den Wortrepräsentationen enthalten sind. In der ersten Publikation untersuchen wir überwachte, graphenbasierte Methodenn um Wortrepräsentationen zu erzeugen. Diese Methoden führen zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, für welches zwei äquivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne Knotenähnlichkeiten effektiv berechnen, da graphenbasierte Wortrepräsentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende Wortrepräsentationen und kombinieren diese mit semantischen Ressourcen, indem wir Repräsentationen für Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und Entitäten. Die Flexibilität unserer Methode zeichnet sich dadurch aus, dass wir beliebige Wortrepräsentationen als Eingabe verwenden können und keinen zusätzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der Wortrepräsentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten Repräsentationen zur Erstellung von Wörterbüchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und Häufigkeit. Die letzte Publikation präsentiert eine neue Rechenmethode für die interpretierbaren ultra-kompakten Untervektorräume -- Stimmung, Konkretheit, Häufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort für Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    Predicting Concreteness and Imageability of Words Within and Across Languages via Word Embeddings

    Full text link
    The notions of concreteness and imageability, traditionally important in psycholinguistics, are gaining significance in semantic-oriented natural language processing tasks. In this paper we investigate the predictability of these two concepts via supervised learning, using word embeddings as explanatory variables. We perform predictions both within and across languages by exploiting collections of cross-lingual embeddings aligned to a single vector space. We show that the notions of concreteness and imageability are highly predictable both within and across languages, with a moderate loss of up to 20% in correlation when predicting across languages. We further show that the cross-lingual transfer via word embeddings is more efficient than the simple transfer via bilingual dictionaries

    Discriminative Topic Mining via Category-Name Guided Text Embedding

    Full text link
    Mining a set of meaningful and distinctive topics automatically from massive text corpora has broad applications. Existing topic models, however, typically work in a purely unsupervised way, which often generate topics that do not fit users' particular needs and yield suboptimal performance on downstream tasks. We propose a new task, discriminative topic mining, which leverages a set of user-provided category names to mine discriminative topics from text corpora. This new task not only helps a user understand clearly and distinctively the topics he/she is most interested in, but also benefits directly keyword-driven classification tasks. We develop CatE, a novel category-name guided text embedding method for discriminative topic mining, which effectively leverages minimal user guidance to learn a discriminative embedding space and discover category representative terms in an iterative manner. We conduct a comprehensive set of experiments to show that CatE mines high-quality set of topics guided by category names only, and benefits a variety of downstream applications including weakly-supervised classification and lexical entailment direction identification.Comment: WWW 2020. (Code: https://github.com/yumeng5/CatE

    Uncovering divergent linguistic information in word embeddings with lessons for intrinsic and extrinsic evaluation

    Full text link
    Following the recent success of word embeddings, it has been argued that there is no such thing as an ideal representation for words, as different models tend to capture divergent and often mutually incompatible aspects like semantics/syntax and similarity/relatedness. In this paper, we show that each embedding model captures more information than directly apparent. A linear transformation that adjusts the similarity order of the model without any external resource can tailor it to achieve better results in those aspects, providing a new perspective on how embeddings encode divergent linguistic information. In addition, we explore the relation between intrinsic and extrinsic evaluation, as the effect of our transformations in downstream tasks is higher for unsupervised systems than for supervised ones.Comment: CoNLL 201

    Antonym-Synonym Classification Based on New Sub-space Embeddings

    Full text link
    Distinguishing antonyms from synonyms is a key challenge for many NLP applications focused on the lexical-semantic relation extraction. Existing solutions relying on large-scale corpora yield low performance because of huge contextual overlap of antonym and synonym pairs. We propose a novel approach entirely based on pre-trained embeddings. We hypothesize that the pre-trained embeddings comprehend a blend of lexical-semantic information and we may distill the task-specific information using Distiller, a model proposed in this paper. Later, a classifier is trained based on features constructed from the distilled sub-spaces along with some word level features to distinguish antonyms from synonyms. Experimental results show that the proposed model outperforms existing research on antonym synonym distinction in both speed and performance
    corecore