5,945 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification

    Tracking in Wireless Sensor Network Using Blind Source Separation Algorithms

    Get PDF
    This thesis describes an approach to track multiple targets using wireless sensor networks. In most of previously proposed approaches, tracking algorithms have access to the signal from individual target for tracking by assuming (a) there is only one target in a field, (b) signals from different targets can be differentiated, or (c) interference caused by signals from other targets is negligible because of attenuation. We propose a general tracking approach based on blind source separation, a statistical signal processing technique widely used to recover individual signals from mixtures of signals. By applying blind source separation algorithms to mixture signals collected from sensors, signals from individual targets can be recovered. By correlating individual signals recovered from different sensors, the proposed approach can estimate paths taken by multiple targets. Our approach fully utilizes both temporal information and spatial information available for tracking. We evaluate the proposed approach through extensive experiments. Experiment results show that the proposed approach can track multiple objects both accurately and precisely. We also propose cluster topologies to improve tracking performance in low-density sensor networks. Parameter selection guidelines for the proposed topologies are given in this Thesis. We evaluate proposed cluster topologies with extensive experiments. Our empirical experiments also show that BSS-based tracking algorithm can achieve comparable tracking performance in comparison with algorithms assuming access to individual signal

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Tracking in Wireless Sensor Network Using Blind Source Separation Algorithms

    Get PDF
    This thesis describes an approach to track multiple targets using wireless sensor networks. In most of previously proposed approaches, tracking algorithms have access to the signal from individual target for tracking by assuming (a) there is only one target in a field, (b) signals from different targets can be differentiated, or (c) interference caused by signals from other targets is negligible because of attenuation. We propose a general tracking approach based on blind source separation, a statistical signal processing technique widely used to recover individual signals from mixtures of signals. By applying blind source separation algorithms to mixture signals collected from sensors, signals from individual targets can be recovered. By correlating individual signals recovered from different sensors, the proposed approach can estimate paths taken by multiple targets. Our approach fully utilizes both temporal information and spatial information available for tracking. We evaluate the proposed approach through extensive experiments. Experiment results show that the proposed approach can track multiple objects both accurately and precisely. We also propose cluster topologies to improve tracking performance in low-density sensor networks. Parameter selection guidelines for the proposed topologies are given in this Thesis. We evaluate proposed cluster topologies with extensive experiments. Our empirical experiments also show that BSS-based tracking algorithm can achieve comparable tracking performance in comparison with algorithms assuming access to individual signal

    On Topology of Sensor Networks Deployed for Multi-Target Tracking

    Get PDF
    In this paper, we study topologies of sensor networks deployed for tracking multiple targets. Tracking multiple moving targets is a challenging problem. Most of the previously proposed tracking algorithms simplify the problem by assuming access to the signal from an individual target for tracking. Recently, tracking algorithms based on blind source separation (BSS), a statistical signal-processing technique widely used to recover individual signals from mixtures of signals, have been proposed. BSS-based tracking algorithms are proven to be effective in tracking multiple indistinguishable targets. The topology of a wireless sensor network deployed for tracking with BSS-based algorithms is critical to tracking performance because the topology affects separation performance, and the topology determines accuracy and precision of estimation on the paths taken by targets. We propose cluster topologies for BSS-based tracking algorithms. Guidelines on parameter selection for proposed topologies are given in this paper. We evaluate the proposed cluster topologies with extensive experiments. Our experiments show that the proposed topologies can significantly improve both the accuracy and the precision of BSS-based tracking algorithms

    High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework

    Get PDF
    High-accuracy distributed information exploitation plays an important role in sensor networks. This dissertation describes a mobile-agent-based framework for target detection and classification in sensor networks. Specifically, we tackle the challenging problems of multiple- target detection, high-fidelity target classification, and unknown-target identification. In this dissertation, we present a progressive multiple-target detection approach to estimate the number of targets sequentially and implement it using a mobile-agent framework. To further improve the performance, we present a cluster-based distributed approach where the estimated results from different clusters are fused. Experimental results show that the distributed scheme with the Bayesian fusion method have better performance in the sense that they have the highest detection probability and the most stable performance. In addition, the progressive intra-cluster estimation can reduce data transmission by 83.22% and conserve energy by 81.64% compared to the centralized scheme. For collaborative target classification, we develop a general purpose multi-modality, multi-sensor fusion hierarchy for information integration in sensor networks. The hierarchy is com- posed of four levels of enabling algorithms: local signal processing, temporal fusion, multi-modality fusion, and multi-sensor fusion using a mobile-agent-based framework. The fusion hierarchy ensures fault tolerance and thus generates robust results. In the meanwhile, it also takes into account energy efficiency. Experimental results based on two field demos show constant improvement of classification accuracy over different levels of the hierarchy. Unknown target identification in sensor networks corresponds to the capability of detecting targets without any a priori information, and of modifying the knowledge base dynamically. In this dissertation, we present a collaborative method to solve this problem among multiple sensors. When applied to the military vehicles data set collected in a field demo, about 80% unknown target samples can be recognized correctly, while the known target classification ac- curacy stays above 95%
    • …
    corecore