190 research outputs found

    Opportunities and Challenges in OFDMA-Based Cellular Relay Networks: A Radio Resource Management Perspective

    Full text link
    The opportunities and flexibility in relay networks and orthogonal frequency-division multiple access (OFDMA) make the combination a suitable candidate network and air-interface technology for providing reliable and ubiquitous high-data-r

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Hybrid turbo FEC/ARQ systems and distributed space-time coding for cooperative transmission

    Get PDF
    Cooperative transmission can be seen as a "virtual" MIMO system, where the multiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gains are achievable. This design involves the definition of the type of retransmission (incremental redundancy, repetition coding), the design of the distributed space-time codes, the error correcting scheme, the operation of the relay (decode&forward or amplify&forward) and the number of antennas at each terminal. Proposed schemes are evaluated in different conditions in combination with forward error correcting codes (FEC), both for linear and near-optimum (sphere decoder) receivers, for its possible implementation in downlink high speed packet services of cellular networks. Results show the benefits of coded cooperation over direct transmission in terms of increased throughput. It is shown that multiplexing gains are observed even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible

    Security enhancement for NOMA-UAV networks

    Get PDF
    Owing to its distinctive merits, non-orthogonal multiple access (NOMA) techniques have been utilized in unmanned aerial vehicle (UAV) enabled wireless base stations to provide effective coverage for terrestrial users. However, the security of NOMA-UAV systems remains a challenge due to the line-of-sight air-to-ground channels and higher transmission power of weaker users in NOMA. In this paper, we propose two schemes to guarantee the secure transmission in UAV-NOMA networks. When only one user requires secure transmission, we derive the hovering position for the UAV and the power allocation to meet rate threshold of the secure user while maximizing the sum rate of remaining users. This disrupts the eavesdropping towards the secure user effectively. When multiple users require secure transmission, we further take the advantage of beamforming via multiple antennas at the UAV to guarantee their secure transmission. Due to the non-convexity of this problem, we convert it into a convex one for an iterative solution by using the second order cone programming. Finally, simulation results are provided to show the effectiveness of the proposed scheme

    QoS constrained cellular ad hoc augmented networks

    Get PDF
    In this dissertation, based on different design criteria, three novel quality of service (QoS) constrained cellular ad hoc augmented network (CAHAN) architectures are proposed for next generation wireless networks. The CAHAN architectures have a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. The CAHAN architectures are an evolutionary approach to conventional cellular networks. The proposed architectures have good system scalability and high system reliability. The first proposed architecture is the QoS constrained minimum-power cellular ad hoc augmented network architecture (QCMP CAHAN). The QCMP CAHAN can find the optimal minimum-power routes under the QoS constraints (bandwidth, packet-delay, or packet-error-rate constraint). The total energy consumed by the MTs is lower in the case of QCMP CAHAN than in the case of pure cellular networks. As the ad hoc communication range of each MT increases, the total transmitted power in QCMP CAHAN decreases. However, due to the increased number of hops involved in information delivery between the source and the destination, the end-to-end delay increases. The maximum end-to-end delay will be limited to a specified tolerable value for different services. An MT in QCMP CAHAN will not relay any messages when its ad hoc communication range is zero, and if this is the case for all MTs, then QCMP CAHAN reduces to the traditional cellular network. A QoS constrained network lifetime extension cellular ad hoc augmented network architecture (QCLE CAHAN) is proposed to achieve the maximum network lifetime under the QoS constraints. The network lifetime is higher in the case of QCLE CAHAN than in the case of pure cellular networks or QCMP CAHAN. In QCLE CAHAN, a novel QoS-constrained network lifetime extension routing algorithm will dynamically select suitable ad-hoc-switch-to-cellular points (ASCPs) according to the MT remaining battery energy such that the selection will balance all the MT battery energy and maximizes the network lifetime. As the number of ASCPs in an ad hoc subnet decreases, the network lifetime will be extended. Maximum network lifetime can be increased until the end-to-end QoS in QCLE CAHAN reaches its maximum tolerable value. Geocasting is the mechanism to multicast messages to the MTs whose locations lie within a given geographic area (target area). Geolocation-aware CAHAN (GA CAHAN) architecture is proposed to improve total transmitted power expended for geocast services in cellular networks. By using GA CAHAN for geocasting, saving in total transmitted energy can be achieved as compared to the case of pure cellular networks. When the size of geocast target area is large, GA CAHAN can save larger transmitted energy
    • …
    corecore