78,735 research outputs found

    Service and device discovery of nodes in a wireless sensor network

    Get PDF
    Emerging wireless communication standards and more capable sensors and actuators have pushed further development of wireless sensor networks. Deploying a large number of sensor\ud nodes requires a high-level framework enabling the devices to present themselves and the resources they hold. The device and the resources can be described as services, and in this paper, we review a number of well-known service discovery protocols. Bonjour stands out with its auto-configuration, distributed architecture, and sharing of resources. We also present a lightweight implementation in order to demonstrate that an emerging standards-based device and service discovery protocol can actually be deployed on small wireless sensor nodes

    Integration between WSNs and Internet based on Address Internetworking for Web Services

    Get PDF
    There has been an increasing interest in wireless sensor networks as a new technology to realize ubiquitous computing, and demands for internetworking technology between the wireless sensor networks and the Internet which is based on IP address. For this purpose, this paper proposes and implements the internetworking scheme which assigns IP addresses to the sensor nodes and internetworks based on the gateway-based integration for internetworking between the wireless sensor networks and the Internet. That is, the proposed scheme makes the access to the wireless sensor networks be serviced as like the Web service with internetworking Internet IP address and ZigBee address which is allocated to the sensor node in wireless sensor networks. For validating the proposed scheme, we made experiments using Berkeley TinyOS, Mica Motes, dual protocol stack based on ZigBee and IP, and showed the service result using browser (IE) and IPv6 address based on DNS

    Distributed Service Discovery for Heterogeneous Wireless Sensor Networks

    Get PDF
    Service discovery in heterogeneous Wireless Sensor Networks is a challenging research objective, due to the inherent limitations of sensor nodes and their extensive and dense deployment. The protocols proposed for ad hoc networks are too heavy for sensor environments. This paper presents a resourceaware solution for the service discovery problem, which exploits the heterogeneous nature of the sensor network and alleviates the high-density problem from the flood-based approaches. The idea is to organize nodes into clusters, based on the available resources and the dynamics of nodes. The clusterhead nodes act as a distributed directory of service registrations. Service discovery messages are exchanged among the nodes in the distributed directory. The simulation results show the performance of the service discovery protocol in heterogeneous dense environments

    CODE: description language for wireless collaborating objects

    Get PDF
    This paper introduces CODE, a Description Language for Wireless Collaborating Objects (WCO), with the specific aim of enabling service management in smart environments. WCO extend the traditional model of wireless sensor networks by transferring additional intelligence and responsibility from the gateway level to the network. WCO are able to offer complex services based on cooperation among sensor nodes. CODE provides the vocabulary for describing the complex services offered by WCO. It enables description of services offered by groups, on-demand services, service interface and sub-services. The proposed methodology is based on XML, widely used for structured information exchange and collaboration. CODE can be directly implemented on the network gateway, while a lightweight binary version is stored and exchanged among sensor nodes. Experimental results show the feasibility and flexibility of using CODE as a basis for service management in WCO

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated
    • 

    corecore