4 research outputs found

    A simulation study of video conferencing system over IEEE 802.11n Wireless LAN

    Get PDF
    Wireless local area network (WLAN) is the core of the classic wireless communications systems and owns the infrastructure which wide spreads in many regions in the world. IEEE 802.11n is an attractive standard of WLAN and offers a data capacity of the cell. This paper estimates the maximum limits of the IEEE 802.11n standard cell as a term of number of users which are successfully served by the cell in case of video conference application. The results shown that, the cell of 802.11n could serve about 9 users under the service of video conference in case of 20MHz channel bandwidth before congestion occurs while the 40MHz channel could support 18 users

    JSCC-Cast: A Joint Source Channel Coding Video Encoding and Transmission System with Limited Digital Metadata

    Get PDF
    [Abstract] This work considers the design and practical implementation of JSCC-Cast, a comprehensive analog video encoding and transmission system requiring a reduced amount of digital metadata. Suitable applications for JSCC-Cast are multicast transmissions over time-varying channels and Internet of Things wireless connectivity of end devices having severe constraints on their computational capabilities. The proposed system exhibits a similar image quality compared to existing analog and hybrid encoding alternatives such as Softcast. Its design is based on the use of linear transforms that exploit the spatial and temporal redundancy and the analog encoding of the transformed coefficients with different protection levels depending on their relevance. JSCC-Cast is compared to Softcast, which is considered the benchmark for analog and hybrid video coding, and with an all-digital H.265-based encoder. The results show that, depending on the scenario and considering image quality metrics such as the structural similarity index measure, the peak signal-to-noise ratio, and the perceived quality of the video, JSCC-Cast exhibits a performance close to that of Softcast but with less metadata and not requiring a feedback channel in order to track channel variations. Moreover, in some circumstances, the JSCC-Cast obtains a perceived quality for the frames comparable to those displayed by the digital one.This work has been funded by the Xunta de Galicia (by grant ED431C 2020/15 and grant ED431G 2019/01 to support the Centro de Investigación de Galicia “CITIC”), the Agencia Estatal de Investigación of Spain (by grants RED2018-102668-T and PID2019-104958RB-C42), and ERDF funds of the EU (FEDER Galicia 2014–2020 and AEI/FEDER Programs, UE)Xunta de Galicia; ED431C 2020/15Xunta de Galicia; ED431G 2019/0

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments
    corecore