2,138 research outputs found

    Analysis of the Cyber Attacks against ADS-B Perspective of Aviation Experts

    Get PDF
    Käesolev töö loob põhjaliku ülevaate lennunduses valitsevatest küberjulgeoleku ohtudest. Tsiviillennunduse lennuliiklusteenindus ja õhuseire on üleminekufaasis valmistudes kasutusele võtma uue põlvkonna tehnoloogiaid, mis tulevikus asendavad praeguse radaripõhise lennukite jälgimissüsteemi uue satelliitpõhise süsteemiga. Lennunduse sideteenuste moderniseerimine loob aluse uuetele turvalisusega seotud ohtudele, mille võimalikke negatiivseid tagajärgi ei ole suudetud veel maandada. Magistritöö eesmärk on koostada kvalitatiivne süstemaatiline analüüs võimalikest küberrünnakutest uue satelliitpõhise automaatse sõltuva seire üldsaade (Automatic dependent surveillance-broadcast –ADS-B) vastu. Analüüs ühendab teadmised küberturvalisuse ja lennunduse valdkonnast, mille koos käsitlemine on oluline turvalise tagamise sesiukohalt. Töö fokusseerub ADS-B süsteemis esinevatele kitsaskohtadele, mis küberturvalise seisukohalt võivad kätkeda ohte või häirida tõsiselt lennuliiklusteeniduse tööd. Potentsiaalsed ohud ADS- S süsteemi vastu on kirjeldatud ja liigitatud sõltuvalt ohuastmest. Analüüsi põhiosa moodustab lennundus spetsialistide seas läbiviidud küsitlus, mille põhjal on hinnatud ohu tõsidust, selle mõju lennundussüsteemile ja milliseid toiminguid on vajalik rakendada ohu esinemise korral. Töö analüüs hindab mõned käsitletud ohtudest ebaoluliseks, mis ei kujuta endast märkisväärset probleemi süsteemi operaatoritele. Sellegi poolest esineb teatava keerulisuse astmega ohustsenaariumeid, mille tagajärjel on süsteem tugevalt häiritud või millega võib kaasneda ulatuslik kahju. Läbiviidud küsitluse põhjal on esitatud meetmeid, kuidas maandada võimalikke negatiivseid mõjusid ohuolukorras. Töö tulemused on olulised pööramaks tähelepanu lennunduses esinevatele küberohtudele. Töö on kirjutatud inglise keeles ja sisaldab 58 lehekülge, 5 peatükki, 17 joonist ja 15 tabelit.The present paper has a profound literature review of the relation between cyber security, aviation and the vulnerabilities prone by the increasing use of information systems in avia-tion realm. Civil aviation is in the process of evolution of the air traffic management sys-tem through the introduction of new technologies. Therefore, the modernization of aero-nautical communications are creating network security issues in aviation that have not been mitigated yet. The purpose of this thesis is to make a systematic qualitative analysis of the cyber-attacks against Automatic Dependent Surveillance Broadcast. With this analysis, the paper combines the knowledge of two fields which are meant to deal together with the security issues in aviation. The thesis focuses on the exploitation of the vulnerabilities of ADS-B and presents an analysis taking into account the perspective of cyber security and aviation experts. The threats to ADS-B are depicted, classified and evaluated by aviation experts, making use of interviews in order to determine the possible impact, and the ac-tions that would follow in case a cyber-attack occurs. The results of the interviews show that some attacks do not really represent a real problem for the operators of the system and that other attacks may create enough confusion due to their complexity. The experience is a determinant factor for the operators of ADS-B, because based on that a set of mitiga-tions was proposed by aviation experts that can help to cope in a cyber-attack situation. This analysis can be used as a reference guide to understand the impact of cyber security threats in aviation and the need of the research and aviation communities to broaden the knowledge and to increase the level of expertise in order to face the challenges posed by network security issues. The thesis is in English and contains 58 pages of text, 5 chapters, 17 figures, 15 tables

    Development and Flight Testing of a Wireless Avionics Network Based on the IEEE 802.11 Protocols

    Get PDF
    This report describes the development and flight testing of the IEEE 802.11 protocol-based Wireless Flight Management System (WFMS) using low cost Commercial-Off-The-Shelf (COTS) equipment and software. The unlicensed spectrum allocation in the 2.4 GHz and 5 GHz bands by the FCC has encouraged the industry to develop new standards for short-range communication that are commercially viable. This has resulted in new short-range communication technologies like Bluetooth and the Wireless Local Area Network (WLAN). The new modulation techniques developed for wireless communication support wired equivalent data rates. The commercial success of these technologies and their wide market adaptation has resulted in reduced costs for the devices that support these technologies. Applications of wireless technology in aerospace engineering are vast, including development, testing, manufacturing, prognostics health management, ground support equipment and active control. The high data rates offered by technologies like WLAN (IEEE 802.11 a/b/g) are sufficient to implement critical and essential data applications of avionics systems. A wireless avionics network based on IEEE 802.11a/b/g protocols will reduce the complexity and cost of installation and maintenance of the avionics system when compared to the existing wired system. The proposed WFMS imitates the flight management system of any commercial aircraft in terms of functionality. It utilizes a radio frequency for the transmission of the sensor data to the Cockpit Display Unit (CDU) and the Flight Management Computer (FMC). WFMS consists of a FMC, data acquisition node, sensor node and a user interface node. The FMC and the data acquisition nodes are built using PC/104 standard modules. The sensor node consists of an Attitude and Heading Reference System (AHRS) and a GPS integrated with a serial device server. The user interface node is installed with moving map software which receives data from the AHRS and GPS to display flight information including topographic maps, attitude, heading, velocity, et cetera. This thesis demonstrates the performance evaluation of the WFMS both on the ground and in flight, and its advantages over a wired system. This thesis focuses on the evaluation of IEEE 802.11a/b/g protocols for avionics application. Efforts taken to calibrate the available bandwidth of the WLAN network at different operating conditions and varying ranges using different network analysis tools are explained briefly. Considerable research on issues like electromagnetic interference and network security critical to the development of a wireless network for avionics has also been done. This report covers different aspects of the implementation of wireless technology for aircraft systems. This work is a successful starting point for the new fly-by-wireless concept with extensions to active wireless flight control

    Review of unmanned aircraft system technologies to enable beyond visual line of sight (BVLOS) operations

    Get PDF
    The need to develop and deploy Beyond Visual Line of Sight (BVLOS) aerial vehicles has intensified over the last decade. As the demand for Unmanned Aircraft Systems (UAS) has increased, so too has the regulations that surrounds the industry. Strict regulations are currently in place but differ from country to country. Due to these regulations BVLOS innovators have been posed the task of exploring the means of operating flight missions with the UAV out of the sight of the pilot. Autonomous flight capability is not only fundamental to BVLOS operations for UAS but also likely to have a significant impact on the future development of passenger carrying autonomous aircraft. This review explores the technologies that have been developed to date that enable BVLOS applications. BVLOS flight operations have the potential to open a huge area of commercial opportunity however, there remain many concerns about the current capabilities of UAS to detect and avoid manned and unmanned airborne hazards that may pose a significant safety risk

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    The State of the Art of Information Integration in Space Applications

    Get PDF
    This paper aims to present a comprehensive survey on information integration (II) in space informatics. With an ever-increasing scale and dynamics of complex space systems, II has become essential in dealing with the complexity, changes, dynamics, and uncertainties of space systems. The applications of space II (SII) require addressing some distinctive functional requirements (FRs) of heterogeneity, networking, communication, security, latency, and resilience; while limited works are available to examine recent advances of SII thoroughly. This survey helps to gain the understanding of the state of the art of SII in sense that (1) technical drivers for SII are discussed and classified; (2) existing works in space system development are analyzed in terms of their contributions to space economy, divisions, activities, and missions; (3) enabling space information technologies are explored at aspects of sensing, communication, networking, data analysis, and system integration; (4) the importance of first-time right (FTR) for implementation of a space system is emphasized, the limitations of digital twin (DT-I) as technological enablers are discussed, and a concept digital-triad (DT-II) is introduced as an information platform to overcome these limitations with a list of fundamental design principles; (5) the research challenges and opportunities are discussed to promote SII and advance space informatics in future
    corecore