8 research outputs found

    Tunneling Appropriate Computational Models from Laser Scanning Data

    Get PDF
    Tunneling projects often require computational models of existing structures. To this end, this paper demonstrates the viability of automatically, robustly reconstructing an individual building model from laser scanning data for further computational modeling without any manual intervention. The resulting model is appropriate for immediate importation into a commercial finite element method (FEM) program. The method combines a voxel-based technique with an angle criterion. Initially, the voxelization model is used to represent the façade model, while an angle criterion is implemented to determine boundaries of the façade and its openings (doors and windows). The algorithm overcomes common problems of occlusions or artefacts that arise during data acquisition. The resulting relative errors of overall dimensions and opening areas of geometric models were less 2% and 6%, respectively, which are generally within industry standards for this type of building modeling.Science Foundation Ireland (SFI/PICA/I850); European Union Grant ERC StG 2012-307836- RETURN

    AUTOMATED DETECTION AND CLOSING OF HOLES IN AERIAL POINT CLOUDS USING AN UAS

    Get PDF

    THE POTENTIAL OF SPECULAR REFLECTIONS FOR FAÇADE IMAGE ANALYSIS

    Get PDF

    Building structural characterization using mobile terrestrial point cloud for flood risk anticipation

    Get PDF
    Compte tenu de la fréquence élevée et de l'impact majeur des inondations, les décideurs, les acteurs des municipalités et le ministère de la sécurité publique ont un besoin urgent de disposer d'outils permettant de prédire ou d'évaluer l'importance des inondations et leur impact sur la population. D'après les statistiques, le premier étage des bâtiments, ainsi que les ouvertures inférieures, sont plus susceptibles de subir des dommages lors d'une inondation. Ainsi, dans le cadre de l'évaluation de l'impact des inondations, il serait nécessaire d'identifier l'emplacement de l'ouverture la plus basse des bâtiments et surtout sa hauteur par rapport au sol. Le système de balayage laser mobile (MLS) monté sur un véhicule s'est avéré être l'une des sources les plus fiables pour caractériser les bâtiments. Il peut produire des millions de points géoréférencés en 3D avec un niveau de détail suffisant, grâce à son point de vue depuis la rue et sa proximité. De plus, l'augmentation du nombre de jeux de données, issues des MLS acquis dans les villes et les environnements ruraux, permet de développer des approches pour caractériser les maisons résidentielles à l'échelle provinciale. Plusieurs défis sont associés à l'extraction d'informations descriptives des façades de bâtiments à l'aide de données MLS. Ainsi, les occlusions devant une façade rendent impossible l'obtention de points 3D sur ces parties de la façade. Aussi, comme les fenêtres sont principalement constituées de verre, qui ne réfléchit pas les signaux laser, les points disponibles pour celles-ci sont généralement limités. De plus, les approches de détection exploitent la répétitivité et les positions symétriques des ouvertures sur la façade. Mais ces caractéristiques sont absentes pour des maisons rurales et résidentielles. Finalement, la variabilité de la densité de points dans les données MLS rend difficile le processus de détection lorsqu'on travaille à l'échelle d'une ville. Par conséquent, l'objectif principal de cette recherche est de concevoir et de développer une approche globale d'extraction efficace des ouvertures présentes sur une façade. La solution proposée se compose de trois phases: l'extraction des façades, la détection des ouvertures et l'identification des occlusions. La première phase utilise une approche de segmentation adaptative par croissance de régions pour extraire la boîte englobante 3D de la façade. La deuxième phase combine la détection de trous avec une technique de maillage pour extraire les boîtes englobantes 2D des ouvertures. La dernière phase, qui vise à discriminer les occlusions des ouvertures, est en cours d'achèvement. Des évaluations qualitatives et quantitatives ont été réalisées à l'aide d'un jeu de données réelles, fourni par Jakarto Cartographie 3D Inc., de la province de Québec, au Canada. Les statistiques ont révélé que l'approche proposée pouvait obtenir de bons taux de performance malgré la complexité du jeu de données, représentatif des données acquises en situation réelle. Les défis concernant l'auto-occlusion de certaines façades et la présence de grandes occlusions environnantes seront à étudier plus en profondeur afin d'obtenir des informations plus précises sur les ouvertures des façades.Given the high frequency and major impact of floods, decision-makers, stakeholders in municipalities and public security ministry are in the urgent need to have tools allowing to predict or assess the significance of flood events and their impact on the population. Based on statistics, the first floor of the buildings, as well as the lower openings, are more likely subject to potential damage during a flood event. Thus, in the context of flood impact assessment, it would be required identifying the location of the buildings' lowest opening and especially its height above the ground. The capacity to characterize building with a relevant level of detail depends on the data sources used for the modeling. Different sources of data have been employed to characterize buildings' façade and openings. Mobile Laser Scanning (MLS) system mounted on a vehicle has proved to be one of the most reliable sources in this domain. It can produce millions of 3D georeferenced points with sufficient level of detail of the building facades and its openings, due to its street-view and close-range distance. Moreover, the increase of MLS providers and acquisitions in towns and rural environments, makes it possible to develop approaches to characterize residential houses at a provincial scale. Although being effective, several challenges are associated with extracting descriptive information of building facades using MLS data. The presence of occlusion in front of a facade makes it impossible to obtain the 3D points of the covered parts of the facade. Given the fact that windows mostly consist of glass and laser signals could not be reflected from the glass, limited points are usually available for windows. While the repetitive pattern and symmetrical positions of the openings on the facade makes it easier for the detection system to extract them, this characteristic is missing on the facade on rural and residential houses. The inconsistency of the point density in MLS data make the detection process even harder when working at city scale. Accordingly, the main objective of this research is to design and develop a comprehensive approach that effectively extracts facade openings. In order to meet the research project objective, the proposed solution consists of three phases including facade extraction, opening detection, and occlusion recognition. The first phase employs an adaptive region growing segmentation approach to extract the 3D bounding box of the facade. The second phase combines a hole-based assumption with an XZ gridding technique to extract 2D bounding boxes of the openings. The last phase which recognizes holes related to the occlusion from the openings is currently being completed. Qualitative and quantitative evaluations were performed using a real-word dataset provided by Jakarto Cartographie 3D inc. of the Quebec Province, Canada. Statistics revealed that the proposed approach could obtain good performance rates despite the complexity of the dataset, representative of the data acquired in real situations. Challenges regarding facade's self-occlusion and the presence of large surrounding occlusions should be further investigated for obtaining more accurate opening information on the facade

    VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS

    Get PDF
    This dissertation addresses the difficulties of semantic segmentation when dealing with an extensive collection of images and 3D point clouds. Due to the ubiquity of digital cameras that help capture the world around us, as well as the advanced scanning techniques that are able to record 3D replicas of real cities, the sheer amount of visual data available presents many opportunities for both academic research and industrial applications. But the mere quantity of data also poses a tremendous challenge. In particular, the problem of distilling useful information from such a large repository of visual data has attracted ongoing interests in the fields of computer vision and data mining. Structural Semantics are fundamental to understanding both natural and man-made objects. Buildings, for example, are like languages in that they are made up of repeated structures or patterns that can be captured in images. In order to find these recurring patterns in images, I present an unsupervised frequent visual pattern mining approach that goes beyond co-location to identify spatially coherent visual patterns, regardless of their shape, size, locations and orientation. First, my approach categorizes visual items from scale-invariant image primitives with similar appearance using a suite of polynomial-time algorithms that have been designed to identify consistent structural associations among visual items, representing frequent visual patterns. After detecting repetitive image patterns, I use unsupervised and automatic segmentation of the identified patterns to generate more semantically meaningful representations. The underlying assumption is that pixels capturing the same portion of image patterns are visually consistent, while pixels that come from different backdrops are usually inconsistent. I further extend this approach to perform automatic segmentation of foreground objects from an Internet photo collection of landmark locations. New scanning technologies have successfully advanced the digital acquisition of large-scale urban landscapes. In addressing semantic segmentation and reconstruction of this data using LiDAR point clouds and geo-registered images of large-scale residential areas, I develop a complete system that simultaneously uses classification and segmentation methods to first identify different object categories and then apply category-specific reconstruction techniques to create visually pleasing and complete scene models

    Automated Extraction of 3D Building Windows from Mobile LiDAR Data

    Get PDF
    The three-dimensional (3D) city models have gained more and more attentions because of their considerable potential applications at present. In particular, the demands for Level of Detail (LoD) building models become urgent. Mobile Laser Scanning (MLS) has supplied a brand-new technology in the acquisition and update of 3D information in urban off-terrain features, particularly for building façade details. Accordingly, generating LoD3 building models from MLS point clouds becomes a new trend in recent studies. As a consequence, a method that can accurately and automatically extract 3D windows from raw MLS point clouds is presented in this thesis. To provide solid and credible information for LoD3 building models, this automated method endeavors to identify window frames on building facades from MLS point clouds. This algorithm can typically be regarded as a stepwise procedure to interpret MLS point clouds as semantic features. A voxel-based upward-growing method is firstly applied to distinguish non-ground points from ground points. Noise is then filtered out from non-ground points by statistical analysis. In order to segment out the building facades, all the remaining non-ground points are clustered based on conditional Euclidean clustering algorithm; clusters whose density and width are over a given threshold will be designated as points for building facades. After a building façade is successfully extracted, a volumetric box is created to contain façade points so that neighbours of each point can be operated. A manipulator is finally applied according to the structural characteristics of window frames to extract the potential window points. The experimental results demonstrate that the proposed algorithm can successfully extract the rectangular or curved windows in the test datasets with promising accuracies. The 2D validation and 3D validation were both conducted in this study. In the 2D validation, the lowest F-measure of the test datasets is 0.740, and the highest can be 0.977. While in the 3D validation, the lowest correctness of the test dataset is 79.58%, and the highest can be 97.96%. After further analysis of the experimental results, it was found that, for those windows concave on walls or with curtains drawn, the performance of the proposed method was influenced. Furthermore, big holes caused by system errors in raw point clouds also had negative impacts on the proposed method. In conclusion, this thesis makes a considerable contribution to extracting 3D rectangular, irregular and arc-rounded windows from noisy MLS point clouds with high accuracy and high efficiency. It has supplied a promising method for generating LoD3 building models
    corecore