198 research outputs found

    Simulation of Power Control of a Wind Turbine Permanent Magnet Synchronous Generator System

    Get PDF
    This thesis presents a control system for a 2MW direct-drive permanent magnet synchronous generator wind turbine system with the objectives to capture the optimal power from the wind and ensure a maximum efficiency for this system. Moreover, in order to eliminate the electrical speed sensor mounted on the rotor shaft of the PMSG to reduce the system hardware complexity and improve the reliability of the system, a sliding mode observer based PM rotor position and speed sensorless control algorithm is presented here. The mathematical models for the wind turbine and the permanent magnet synchronous machine are first given in this thesis, and then optimal power control algorithms for this system are presented. The optimal tip speed ratio based maximum power point tracking control is utilized to ensure the maximum power capture for the system. The field oriented control algorithm is applied to control the speed of the PMSG with the reference of the wind speed. In the grid-side converter control, voltage oriented control algorithm is applied to regulate the active and reactive power injected into the power grid. What is more, sliding mode observer based sensorless control algorithm is also presented here. The simulation study is carried out based on MATLAB/Simulink to validate the proposed system control algorithms

    Fractional kVA Rating PWM Converter Doubly Fed Variable Speed Electric Generator Systems:An Overview in 2020

    Get PDF
    Variable speed generator systems (VSGs) are at work in the now 600 GW installed wind power plants (parks). Also, they are used as vehicular and on ground stand-alone generators. VSGs imply full kVA rating PWM converters in permanent magnet (PM) or in electrically excited synchronous or in cage rotor inductance generators. But, to reduce cost in absence of PMs at a reasonable initial cost (weight) and efficiency, the fractional kVA PWM converter doubly fed induction generators (DFIG) cover now about 50% of all installed power in wind generators. The present paper reviews recent progress in DFIG and various forms of brushless DFGs (doubly fed generators) characterized in terms of topology, design, performance and advanced control for healthy and faulty load conditions in the hope of inspiring new, hopefully ground breakings, progress for wind and hydro energy conversion and in vehicular and on the ground stand-alone generator applications

    Permanent Magnet Vernier Machine: A Review

    Get PDF
    Permanent magnet vernier machines (PMVMs) gained a lot of interest over the past couple of decades. This is mainly due to their high torque density enabled by the magnetic gearing effect. This study will provide a thorough review of recent advances in PMVMs. This review will cover the principle of operation and nature of magnetic gearing in PMVMs, and a better understanding of novel PMVM topologies using different winding configuration as well as different modulation poles and rotor structures. Detailed discussions on the choice of gear ratio, slot-pole combinations, design optimisation and role of advanced materials in PMVMs will be presented. This will provide an update on the current state-of-the art as well as future areas of research. Furthermore, the power factor issue, fault tolerance as well as cost reduction will be discussed highlighting the gap between the current state-of-the art and what is needed in practical applications

    Addendum of 2MW Wind Turbine to A Power with Directly-Driven Permanent Magnet Generation System

    Get PDF
    In recent years, wind turbine has become an acceptable alternative energy generation, because of the environmental and economic benefits. Notwithstanding more research works still need to be done to reduce wind turbine installation complexity, enhance profitability and reliability especially in developing countries like Nigeria. This paper presents the modeling and analysis of a 2MW variable-speed directly-driven permanent magnet synchronous generator (PMSG), Wind energy conversion system (WECS). The objective is to optimize the power captured from the wind, ensure optimum efficiency for power generation and reduce system hardware count. The mathematical model for the permanent magnet synchronous wind turbine and its power control algorithms are modified by removing the speed sensors. Further, enhancement was achieved by utilizing wind speed forecasts as the starting speed. A modified Field Orientation Control FOC and voltage orientation control VOC scheme were developed for the system using matlab Simulink CAD application. The Simulation results of the model for various changes in wind speed utilizing average wind speed data of Mmaku in Awgu local government area of Enugu state Nigeria. The developed system ability to ‘smoothen’ the power, voltage output and operates at the optimum coefficient of performance between the cut in speed of 3m/s and 12m/s without wind sensor is found to be promising, Key words: wind turbine, variable-speed, permanent magnet, synchronous generator, efficiency DOI: 10.7176/JETP/9-3-04 Publication date:March 31st 201

    AN OVERVIEW OF PROSPECTS AND PROBLEMS FOR CONVENTIONAL ELECTRIC MACHINES AND DRIVES FOR THE WIND POWER GENERATION

    Get PDF
    The increasing desire to wind power production systems is a result of rising worries about the energy problem and safeguarding the environment. Researchers and engineers urgently need to create new electrical equipment and drives for the production of wind energy since they are essential parts of wind turbines. An in-depth analysis of contemporary electric drives and machines used in the production of wind energy is provided in this study, with a focus on machine topologies, operating theories, performance traits, and control methods. The major characteristics associated with electrical drives and machines are contrasted and summarized, along with their benefits and drawbacks, such as efficiency, torque/power weight, and cost. The trade-offs inherent in the different methodologies and solutions given are emphasized. The main obstacles and problems that electric drives and equipment for the production of wind energy face are highlighted. Additionally, new opportunities and trends are exposed, and the most recent developments are also covered

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    Wind Turbine Generator Technologies

    Get PDF

    Dynamic Modeling for Open- and Closed-loop Control of PMSG based WECS with Fuzzy Logic Controllers

    Get PDF
    The high risk in developing a more advanced wind power generator with scientific and technological know-how, heavy loss in maintaining the accessories of a wind plant and stochastic nature of wind energy make the maximum energy retrieval questionable, but still optimum wind energy extraction can be achieved by operating the wind turbine generator (WTG) in a variable-speed, variable-frequency mode with different types of wind electric generators (WEGs). In this chapter, maximum power from wind using permanent magnet synchronous generator (PMSG) is made possible by using intelligent controllers, namely fuzzy logic controllers. The chapter also discusses the simulated results obtained from modeling, simulation, and analysis of this PMSG-based wind energy conversion system (WECS) for both open- and closed-loop control strategies. PMSG suffers drastically from load and strong decay of magnetic field, which tends to reduce the generated voltage at the stator terminals, making it difficult for isolated operation and thus the whole analysis is done with grid-connected network. The other major limitations include loss of flexibility in field flux control, hence intelligent techniques like fuzzy logic mechanism are attempted along with space-vector modulation (SVM) to have a smooth control of field flux and load power management in PMSG

    Speed sensorless and MPPT control of IPM synchronous generator for wind energy conversion system

    Get PDF
    The popularity of renewable energy has experienced significant growth recently due to the foreseeable exhaustion of conventional fossil fuel power generation methods and increasing realization of the adverse effects that conventional fossil fuel power generation has on the environment. Among the renewable energy sources, wind power generation is rapidly becoming competitive with conventional fossil fuel sources. The wind turbines in the market have a variety of innovative concepts, with proven technology for both generators and power electronics interfaces. Recently, variable-speed permanent magnet synchronous generator (PMSG) based wind energy conversion systems (WECS) is becoming more attractive in comparison to the fixed-speed WECS. In the variable-speed generation system, the wind turbine can be operated at maximum power operating points over a wide speed range by adjusting the shaft speed optimally. This thesis presents both wind and rotor speed sensorless control for the direct-drive interior permanent magnet synchronous generator (IPMSG) with maximum power point tracking (MPPT) algorithm. The proposed method, without requiring the knowledge of wind speed, air density or turbine parameters, generates optimum speed command for speed control loop of vector controlled machine side converter. The MPPT algorithm based on perturbation and observation uses only estimated active power as its input to track peak output power points in accordance with wind speed change and incorporates proposed sensorless control to transfer maximum dc-link power from generator. In this work for the IPMSG, the rotor position and speed are estimated based on model reference adaptive system. Additionally, it incorporates flux weakening controller (FWC) for wide operating speed range at various wind speed and other disturbances. Matlab/Simulink based simulation model of the proposed sensorless MPPT control of IPMSG based WECS is built to verify the effectiveness of the system. The MPPT controller has been tested for variable wind speed conditions. The performance of the proposed WECS is also compared with the conventional control of WECS system. The proposed IPMSG based WECS incorporating the MPPT and sensorless algorithms is successfully implemented in real-time using the digital signal processor (DSP) board DS1104 for a laboratory 5 hp machine. A 5 hp DC motor is used as wind turbine to drive the IPMSG. The speed tracking performance and maximum power transfer capability of the proposed WECS are verified by both simulation and experimental results at different speed conditions

    Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling

    Get PDF
    To counteract a potential reduction in grid stability caused by a rapidly growing share of intermittent renewable energy sources within our electrical grids, large scale deployment of energy storage will become indispensable. Pumped hydro storage is widely regarded as the most cost-effective option for this. However, its application is traditionally limited to certain topographic features. Expanding its operating range to lowhead scenarios could unlock the potential of widespread deployment in regions where so far it has not yet been feasible. This review aims at giving a multi-disciplinary insight on technologies that are applicable for low-head (2-30 m) pumped hydro storage, in terms of design, grid integration, control, and modelling. A general overview and the historical development of pumped hydro storage are presented and trends for further innovation and a shift towards application in low-head scenarios are identified. Key drivers for future deployment and the technological and economic challenges to do so are discussed. Based on these challenges, technologies in the field of pumped hydro storage are reviewed and specifically analysed regarding their fitness for low-head application. This is done for pump and turbine design and configuration, electric machines and control, as well as modelling. Further aspects regarding grid integration are discussed. Among conventional machines, it is found that, for high-flow low-head application, axial flow pump-turbines with variable speed drives are the most suitable. Machines such as Archimedes screws, counter-rotating and rotary positive displacement reversible pump-turbines have potential to emerge as innovative solutions. Coupled axial flux permanent magnet synchronous motor-generators are the most promising electric machines. To ensure grid stability, grid-forming control alongside bulk energy storage with capabilities of providing synthetic inertia next to other ancillary services are required
    • …
    corecore