104 research outputs found

    The NASA Cyclone Global Navigation Satellite System SmallSat Constellation

    Get PDF
    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites launched on 15 December 2016 into a common circular orbit at ~525 km altitude and 35 deg inclination. Each observatory carries a four channel bistatic radar receiver to measure GPS signals scattered by the Earth surface. Over ocean, near-surface wind speed, air-sea latent and sensible heat flux, and ocean microplastic concentration are derived from the measurements. Over land, near-surface soil moisture and inland water bodies extent are derived. The measurements penetrate through all levels of precipitation and most vegetation due to the 19 cm wavelength of GPS L1 signals. The sampling produced by the constellation makes possible the reliable detection of short time scale weather events such as flood inundation dynamics immediately after a tropical cyclone landfall and rapid soil moisture dry down immediately after major precipitation events. The sun-asynchronous nature of the CYGNSS orbit also supports full sampling of the diurnal cycle of hydrological dynamics within a short period of time. Summaries are presented of engineering and science highlights of the CYGNSS mission, with particular emphasis on those aspects most directly enabled by the use of a constellation of SmallSats

    The NASA CYGNSS SmallSat Constellation

    Get PDF
    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellites in low earth orbit at ~525 km altitude and 35 deg inclination. CYGNSS was launched in December 2016 for a planned 2 year mission and 7 of the 8 spacecraft continue to operatue nominally as of May 2023. Each microsatellites carries a bistatic radar receiver to measure reflected GPS signals from the Earth surface. The measurements can be converted to surface wind speed and latent and sensible heat flux over the ocean, and to surface soil moisture and wetland extent over land. Measurements penetrate through all levels of precipitation as well as moderate to heavy vegetation due to the low microwave frequency used by GPS. The number of satellites in the constellation results in sub-daily refresh rates which supports imaging of short time scale weather events such as hurricane rapid intensification, flood inundation dynamics, and sudden soil saturation after major rain events. CYGNSS satellites uses a single string design architecture to reduce the complexity and recurring cost of each unit. Mission redundancy is obtained at the constellation level. Data products are produced by combining measurements from all satellites in such a way that the sampling requirements can be met using only a subset of the satellites. Constellation-level redundancy also permits individual satellites to be switched from their nominal science data taking mode to various engineering test and calibration modes while the overall mission is still able to meet its science requirements

    Azimuthal Dependence of GNSS‐R Scattering Cross‐Section in Hurricanes

    Full text link
    Global Navigation Satellite System‐Reflectometry (GNSS‐R) measurements of the ocean surface are sensitive to roughness scales ranging from a few cms to several kms. Inside a hurricane the surface roughness changes drastically due to varying sea age and fetch length conditions and complex wave‐wave interactions caused by its cyclonic rotation and translational motion. As a result, the relationship between the surface roughness at different scale sizes becomes azimuthally dependent, as does the relationship between scattering cross‐section and wind speed as represented by a Geophysical Model Function (GMF). In this work, the impact of this azimuthal variation on the scattering cross‐section is assessed. An empirical GMF is constructed using measurements by the NASA CYclone GNSS (CYGNSS) matched to HWRF reanalysis surface winds for 19 hurricanes in 2017 and 2018. The analysis reveals a 2–8% variation in scattering cross‐section due to azimuthal location, and the magnitude of the azimuthal dependence is found to grow with wind speed.Plain Language SummaryGlobal Navigation Satellite System‐Reflectometry (GNSS‐R) is a technique of studying reflected GPS signals to extract useful information about the surface. CYGNSS is the first of its kind GNSS‐R constellation mission selected by NASAs earth venture program. The goal of the mission is to understand inner core processes in hurricanes by making accurate surface wind speed measurements there. Wind speed at the surface is determined using a GMF that maps the reflection measurement to a wind speed. Due to the complex nature of sea state and wave interactions inside a hurricane, measured scattering cross‐section depends on the azimuthal location of the measurement inside the hurricane system. A modified GMF is proposed here that accounts for the azimuthal dependence. The model is developed by matching up CYGNSS measurements to hurricane winds estimated by the NOAA HWRF model for 19 hurricanes during 2017 and 2018. The new GMF accounts for a 2–8% variation in the measurements due to azimuthal location which increases with wind speed.Key PointsAzimuthal variations of GNSS‐R scattering cross‐section in hurricanes are modeled with sinusoidal harmonicsThe azimuthal harmonics explain 2–8% of the overall variation in scattering cross‐sectionThe magnitude of the azimuthal harmonics increases with increasing wind speedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156153/2/jgrc24060.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156153/1/jgrc24060_am.pd

    Estimation of swell height using spaceborne GNSS-R data from eight CYGNSS satellites

    Get PDF
    Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R) technology has opened a new window for ocean remote sensing because of its unique advantages, including short revisit period, low observation cost, and high spatial-temporal resolution. In this article, we investigated the potential of estimating swell height from delay-Doppler maps (DDMs) data generated by spaceborne GNSS-R. Three observables extracted from the DDM are introduced for swell height estimation, including delay-Doppler map average (DDMA), the leading edge slope (LES) of the integrated delay waveform (IDW), and trailing edge slope (TES) of the IDW. We propose one modeling scheme for each observable. To improve the swell height estimation performance of a single observable-based method, we present a data fusion approach based on particle swarm optimization (PSO). Furthermore, a simulated annealing aided PSO (SA-PSO) algorithm is proposed to handle the problem of local optimal solution for the PSO algorithm. Extensive testing has been performed and the results show that the swell height estimated by the proposed methods is highly consistent with reference data, i.e., the ERA5 swell height. The correlation coefficient (CC) is 0.86 and the root mean square error (RMSE) is 0.56 m. Particularly, the SA-PSO method achieved the best performance, with RMSE, CC, and mean absolute percentage error (MAPE) being 0.39 m, 0.92, and 18.98%, respectively. Compared with the DDMA, LES, TES, and PSO methods, the RMSE of the SA-PSO method is improved by 23.53%, 26.42%, 30.36%, and 7.14%, respectively.This work was supported in part by the National Natural Science Foundation of China under Grant 42174022, in part by the Future Scientists Program of China University of Mining and Technology under Grant 2020WLKXJ049, in part by the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant KYCX20_2003, in part by the Programme of Introducing Talents of Discipline to Universities, Plan 111, Grant No. B20046, and in part by the China Scholarship Council (CSC) through a State Scholarship Fund (No. 202106420009).Peer ReviewedPostprint (published version

    The GRSS standard for GNSS-reflectometry

    Get PDF
    In February 2019 a Project Authorization Request was approved by the Institute of Electrical and Electronics Engineers (IEEE) Standards Association with the title “Standard for Global Navigation Satellite System Reflectometry (GNSS-R) Data and Metadata Content”. A Working Group has been assembled to draft this standard with the purpose of unifying and documenting GNSS-R measurements, calibration procedures, and product level definitions. The Working Group (http://www.grss-ieee.org/community/technical-committees/standards-or-earth-observations/) includes members, collaborators, and contributors from academia, international space agencies, and private industry. In a recent face-to-face meeting held during the ARSI+KEO 2019 Conference, the need was recognized to develop a standard with a wide range of operations, providing procedure guidelines independently of constraints imposed by current limitations on geophysical parameters retrieval algorithms. As such, this effort aims to establish the fundamentals of a potential virtual network of satellites providing inter-comparable data to the scientific community.Peer ReviewedPostprint (author's final draft

    Wind Speed Estimation From CYGNSS Using Artificial Neural Networks

    Get PDF
    In this article, a retrieval algorithm based on the use of an artificial neural network (ANN) is proposed for wind speed estimations from cyclone global navigation satellite system (CYGNSS). The delay/Doppler map average and the leading edge slope observables, derived from CYGNSS delay/Doppler maps, are used as inputs to the network, along with geographical, geometry, and hardware antenna information. The derivation of the optimal number of hidden layers and neurons is obtained using statistical metrics of agreement between the CYGNSS data and the wind matchups obtained from modelled winds output by the wavewatch 3 (WW3) model. A cumulative distribution function (CDF) matching step is applied to the network outputs, to impose that the CDF of the retrievals matches that of the matchups. The resulting wind speeds are unbiased with respect to WW3 modeled winds, and deliver a global root mean square (RMS) difference (RMSD) of 1.51 m/s, over a dynamic range of wind speeds up to 32 m/s. The obtained RMSD is the lowest among those seen in literature for wind speed retrievals from CYGNSS. A comparison is carried out between the winds retrieved from the ANN approach and those derived using the fully developed sea approach, which represent the CYGNSS baseline wind product. The comparison highlights that the ANN approach outperforms the baseline approach for both low and high wind speeds and removes most of the geographical biases between baseline winds and WW3 winds seen in monthly maps of wind speeds. The ANN approach could well be applied to the entire CYGNSS dataset to generate an enhanced wind speed product

    First spaceborne GNSS-Reflectometry observations of hurricanes from the UK TechDemoSat-1 mission

    Get PDF
    We present the first examples of GNSS-Reflectometry observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with IBTrACS hurricane data, MetOp ASCAT A/B scatterometer winds and two re-analysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients which are consistent with expected structures around the eye of tropical cyclones

    Evaluating Impact of Rain Attenuation on Space-borne GNSS Reflectometry Wind Speeds

    Get PDF
    The novel space-borne Global Navigation Satellite System Reflectometry (GNSS-R) technique has recently shown promise in monitoring the ocean state and surface wind speed with high spatial coverage and unprecedented sampling rate. The L-band signals of GNSS are structurally able to provide a higher quality of observations from areas covered by dense clouds and under intense precipitation, compared to those signals at higher frequencies from conventional ocean scatterometers. As a result, studying the inner core of cyclones and improvement of severe weather forecasting and cyclone tracking have turned into the main objectives of GNSS-R satellite missions such as Cyclone Global Navigation Satellite System (CYGNSS). Nevertheless, the rain attenuation impact on GNSS-R wind speed products is not yet well documented. Evaluating the rain attenuation effects on this technique is significant since a small change in the GNSS-R can potentially cause a considerable bias in the resultant wind products at intense wind speeds. Based on both empirical evidence and theory, wind speed is inversely proportional to derived bistatic radar cross section with a natural logarithmic relation, which introduces high condition numbers (similar to ill-posed conditions) at the inversions to high wind speeds. This paper presents an evaluation of the rain signal attenuation impact on the bistatic radar cross section and the derived wind speed. This study is conducted simulating GNSS-R delay-Doppler maps at different rain rates and reflection geometries, considering that an empirical data analysis at extreme wind intensities and rain rates is impossible due to the insufficient number of observations from these severe conditions. Finally, the study demonstrates that at a wind speed of 30 m/s and incidence angle of 30°, rain at rates of 10, 15, and 20 mm/h might cause overestimation as large as ≈0.65 m/s (2%), 1.00 m/s (3%), and 1.3 m/s (4%), respectively, which are still smaller than the CYGNSS required uncertainty threshold. The simulations are conducted in a pessimistic condition (severe continuous rainfall below the freezing height and over the entire glistening zone) and the bias is expected to be smaller in size in real environments

    A Preliminary Impact Study of CYGNSS Ocean Surface Wind Speeds on Numerical Simulations of Hurricanes

    Full text link
    The NASA Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016, providing an unprecedented opportunity to obtain ocean surface wind speeds including wind estimates over the hurricane inner‐core region. This study demonstrates the influence of assimilating an early version of CYGNSS observations of ocean surface wind speeds on numerical simulations of two notable landfalling hurricanes, Harvey and Irma (2017). A research version of the National Centers for Environmental Prediction operational Hurricane Weather Research and Forecasting model and the Gridpoint Statistical Interpolation‐based hybrid ensemble three‐dimensional variational data assimilation system are used. It is found that the assimilation of CYGNSS data results in improved track, intensity, and structure forecasts for both hurricane cases, especially for the weak phase of a hurricane, implying potential benefits of using such data for future research and operational applications.Plain Language SummaryThe NASA Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016. It provides an unprecedented opportunity to obtain ocean surface wind speeds over a hurricane inner‐core region. In this study, we combined the early version of CYGNSS data with all other observations that are currently available for operational forecasts to form initial conditions (inputs data) for a numerical weather prediction model. A research version of the National Oceanic and Atmospheric Administration operational hurricane forecast model named the Hurricane Weather Research and Forecast (HWRF) model is used. Results show that adding CYGNSS data into HWRF model results in improved track, intensity, and structure forecasts for two notable landfalling hurricanes, Harvey and Irma (2017), demonstrating the potential benefits of using CYGNSS data for future research and operational applications.Key PointsThe NASA Cyclone Global Navigation Satellite System (CYGNSS) provides an unprecedented opportunity to obtain ocean surface wind data over a hurricane inner‐core regionThis study found that the assimilation of CYGNSS data results in improved track, intensity, and structure forecasts for two notable landfalling hurricanes, Harvey and Irma (2017)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148339/1/grl58695.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148339/2/grl58695_am.pd

    Remote Sensing of Tropical Cyclones: Applications from Microwave Radiometry and Global Navigation Satellite System Reflectometry

    Full text link
    Tropical cyclones (TCs) are important to observe, especially over the course of their lifetimes, most of which is spent over the ocean. Very few in situ observations are available. Remote sensing has afforded researchers and forecasters the ability to observe and understand TCs better. Every remote sensing platform used to observe TCs has benefits and disadvantages. Some remote sensing instruments are more sensitive to clouds, precipitation, and other atmospheric constituents. Some remote sensing instruments are insensitive to the atmosphere, which allows for unobstructed observations of the ocean surface. Observations of the ocean surface, either of surface roughness or emission can be used to estimate ocean surface wind speed. Estimates of surface wind speed can help determine the intensity, structure, and destructive potential of TCs. While there are many methods by which TCs are observed, this thesis focuses on two main types of remote sensing techniques: passive microwave radiometry and Global Navigation Satellite System reflectometry (GNSS-R). First, we develop and apply a rain rate and ocean surface wind speed retrieval algorithm for the Hurricane Imaging Radiometer (HIRAD). HIRAD, an airborne passive microwave radiometer, operates at C-band frequencies, and is sensitive to rain absorption and emission, as well as ocean surface emission. Motivated by the unique observing geometry and high gradient rain scenes that HIRAD typically observes, a more robust rain rate and wind speed retrieval algorithm is developed. HIRAD’s observing geometry must be accounted for in the forward model and retrieval algorithm, if high rain gradients are to be estimated from HIRAD’s observations, with the ultimate goal of improving surface wind speed estimation. Lastly, TC science data products are developed for the Cyclone Global Navigation Satellite System (CYGNSS). The CYGNSS constellation employs GNSS-R techniques to estimate ocean surface wind speed in all precipitating conditions. From inputs of CYGNSS level-2 wind speed observations and the storm center location, a variety of products are created: integrated kinetic energy, wind radii, radius of maximum wind speed, and maximum wind speed. These products provide wind structure and intensity information—valuable for situational awareness and science applications.PHDAtmospheric, Oceanic & Space ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137109/1/marygm_1.pd
    • 

    corecore