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Abstract—In this article, a retrieval algorithm based on the
use of an artificial neural network (ANN) is proposed for wind
speed estimations from cyclone global navigation satellite system
(CYGNSS). The delay/Doppler map average and the leading edge
slope observables, derived from CYGNSS delay/Doppler maps, are
used as inputs to the network, along with geographical, geometry,
and hardware antenna information. The derivation of the optimal
number of hidden layers and neurons is obtained using statistical
metrics of agreement between the CYGNSS data and the wind
matchups obtained from modelled winds output by the wavewatch
3 (WW3) model. A cumulative distribution function (CDF) match-
ing step is applied to the network outputs, to impose that the CDF
of the retrievals matches that of the matchups. The resulting wind
speeds are unbiased with respect to WW3 modeled winds, and
deliver a global root mean square (RMS) difference (RMSD) of
1.51 m/s, over a dynamic range of wind speeds up to 32 m/s. The
obtained RMSD is the lowest among those seen in literature for
wind speed retrievals from CYGNSS. A comparison is carried out
between the winds retrieved from the ANN approach and those
derived using the fully developed sea approach, which represent the
CYGNSS baseline wind product. The comparison highlights that
the ANN approach outperforms the baseline approach for both low
and high wind speeds and removes most of the geographical biases
between baseline winds and WW3 winds seen in monthly maps of
wind speeds. The ANN approach could well be applied to the entire
CYGNSS dataset to generate an enhanced wind speed product.

Index Terms—Artificial neural network (ANN), cyclone global
navigation satellite system (CYGNSS), global navigation satellite
system-reflectometry (GNSS-R), wind speed.

I. INTRODUCTION

G LOBAL navigation satellite system-reflectometry
(GNSS-R) is a passive remote sensing technique that

uses global navigation satellite signals reflected off of the
Earth’s surface to gain information about the characteristics
of those surfaces. By using signals that are already in space,
GNSS-R is a cost-effective way of collecting valuable data
for the derivation of geophysical parameter, requiring only
receivers to be built for specific missions. The most successful
example of GNSS-R mission is the cyclone global navigation
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satellite system (CYGNSS) mission [1], designed primarily
for the purpose of monitoring tropical cyclones [2]– [5], but
collecting data over all of the oceans and providing global
retrievals of wind speeds [6]–[8]. These retrievals are achieved
using the so-called baseline approach that implements the
minimum variance combination of wind estimates from two
observables, derived from CYGNSS delay/Doppler maps, and
known as delay/Doppler map average (DDMA) and leading
edge slope (LES) [6] [8]. The wind speed estimates derived from
each of these observables are obtained via the development
of geophysical model functions (GMFs), which consist of
2-D lookup tables of retrieved wind speed, function of the
observable and the incidence angle [8]. The baseline winds
provide good quality global wind estimates which have been
shown to meet the mission requirements [9], but suffer from
significant retrieval biases, especially at high wind speeds [1],
[10]. This study demonstrates that a significant improvement in
the wind speed estimation can be globally achieved through the
use of an Artificial Neural Network (ANN) approach, providing
global estimates of wind speeds which are better than the
baseline ones over the full dynamic range of wind speeds.

ANN are aimed at providing a minimum variance solution
to the given problem. If appropriately trained, ANN are able to
reproduce almost any relationship between inputs and outputs
[11], [12]. ANNs were successfully employed in solving a wide
variety of remote sensing problems [13]–[15], since they offer
an easy but effective possibility of combining input data from
different sources into the same retrieval algorithm [16].

In particular, ANNs have been widely applied in the context
of wind speed retrieval from scatterometers [17], [18], and more
recently they have been used within the GNSS-R field. ANNs
in combination with a particle filter and particle swarm opti-
mization have been exploited for ocean wind speed estimations
in coastal regions, using Beidou satellite data, and in the days
surrounding Typhoon Utor [19], [20]. Other Machine Learning
(ML) approaches have also been proposed for the retrieval of
wind speed using GNSS-R data from both TechDemoSat-1 [21]
and CYGNSS [22]. ANNs and convolutional neural networks
have also been used for purposes other than the wind speed,
such as Sea Ice Detection and Sea Ice Concentrations estimation
using GNSS-R Delay Doppler Maps [23], [24]. More generally,
in the field of remote sensing ANNs have been used widely, for
instance for forecasting SWH [25], estimating precipitation from
remote sensing information [26] and sea surface temperature
forecasting [27] among other applications. In this article, an
ANN approach is applied to CYGNSS data for ocean wind speed
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estimation. The approach proposed in this article is simple and
computationally effective, and at the same time provides wind
speed retrievals with improved performance compared to all the
approaches existing in literature for wind speed estimation from
CYGNSS data. In particular, the ANN algorithm proposed here
yields unbiased wind speed estimates with a global root mean
square difference (RMSD) of 1.51 m/s, over a wind speed range
from 0 m/s to 32 m/s. The achieved RMSD is lower than the
other RMSD values obtained from other wind speed retrieval
algorithms for CYGNSS [8], [9], [22], [28], [39]. The approach
analyzed in this paper differs in particular quite significantly
from that illustrated in [22], where an ANN is also used, but
with different input parameters both in number and type, and
with a number of layers and neurons of the network unspecified.
The network adopted in this study is a feed-forward network
whereas the one in [22] uses a backpropagation algorithm to
derive the optimal wind speed estimates. The results obtained
in this article outperform those illustrated in [22], and are more
robust since they are derived using a CYGNSS dataset composed
of tens of millions of samples, compared to the 40 000 sam-
ples used in [22]. The methodology for wind speed estimation
proposed in this study uses an ANN with a number of inputs
to learn the complex relationships between the inputs and the
output and to produce reliable estimates of the wind speed.
The winds estimated from the ANN also undergo a Cumula-
tive Distribution Function (CDF) correction similar to what is
conventionally done in scatterometry [29], which contributes to
a further improvement of the final results. The obtained wind
speed estimates are compared in particular to the wind speed
retrievals under Fully Developed Seas (FDS), derived using the
CYGNSS baseline algorithm [8]. It is shown that the ANN
based estimates exhibit improvements compared to the baseline
approach generally everywhere, and reproduce better the high
wind speed region. This region tends to be generally problematic
for conventional algorithms [1], [8], [10] but could easily benefit
from the use of ANNs, provided that a sufficiently high number
of high wind occurrences can be included in the training dataset
as input to the ANN. The technique here is demonstrated using
two months of CYGNSS data, which already represents a large
amount of data samples to both test and train the network,
that span a large range of wind speed conditions. The rest of
this article is organized as follows. Section II describes the
datasets used and the filtering applied. Section III explains the
implemented ANN configuration and the optimal parameters for
the ANN. Section IV illustrates the results globally and statistical
analysis; Finally, Section V concludes this article.

II. DATA

The data used are CYGNSS Level 2 version 2.1, filtered
in order to obtain the best quality data. The criteria used for
the filtering are the same as in [28], but are here repeated for
convenience:

1) the observables need to have good quality, which is deter-
mined by the Quality Control (QC) flag in the data;

2) the observables as well as the wind speed matchups need
to be positive;

Fig. 1. Simplified visualization of the artificial neural network.

3) the measurements taken when the star tracker is not track-
ing due to solar contamination are discarded;

4) the measurements from the GPS Block type II-F satellites
are discarded, due to the lack of accurate information on
the transmitter antenna gain pattern for this family of GPS
satellites;

5) the Range-Corrected Gain (RCG) of the measurements is
higher than 3. The definition and description of RCG can
be found in [6];

The data spanned the period August 1 to November 30, 2017
and post filtering 72 million samples remained for use in the
ANN. Modelled ocean surface wind speeds output from the
wavewatch 3 (WW3) model [40] with input wind forcing from
the European Centre for Medium-Range Weather Forecast [30]
were used as reference matchups. These matchups cover a wind
speed range from 0 m/s to 32 m/s.

III. METHODOLOGY

In this section, we describe the approach used to estimate
wind speed, based on the use of Artificial Neural Networks and
the subsequent CDF matching correction.

A. ANN Configuration

Artificial neural networks (ANNs) are a relatively simple ma-
chine learning tool that allows complicated tasks to be completed
quickly, by learning relationships that exist between the input
and the output. ANNs consist of at least 3 layers: an input
layer, a hidden layer or layers and an output layer as shown in
Fig. 1. Each layer contains neurons with each neuron connected
to every neuron in the following layer, in this way resembling
the structure of a biological neural network [31]. The number
of hidden layers used in an ANN is generally between 1-3 and
4 or more are rarely used [32]. The ANNs used for this study
are feed forward networks where information is passed from
the input layer through the hidden layer(s) and out to the output
layer in a forward pass [33]. The training is based on the back
propagation learning rule (BPR) [34]: it is a gradient descent
algorithm aimed at minimizing the MSE between predicted
outputs and target values by adjusting the network parameters
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Fig. 2. (Top) Correlation coefficient and (bottom) standard deviation of the
Error when varying the number of neurons in each layer and the number of
layers.

(i.e. weights and biases). Overfitting is a common potential
problem when using ANNs, which occurs when the network
has been trained to accurately predict the output for the training
dataset but performs poorly on a new test dataset [35]. In order
to avoid overfitting, two separate datasets were used, one for
training and one for validation [16], so that any overfitting could
be spotted by checking and ensuring that the errors for both
were similar. The training dataset is further split randomly into
a training set and two test sets, composed of 70%, 15% and 15%
of the dataset, respectively. The first subset served for training
the ANN by using BPR and the other two subsets served to have
two independent tests of the network at each training iteration.
Based on the early stopping rule [35], training stops either when
the training error has stopped decreasing for a certain number of
iterations, in this case after 6 iterations, or when the error on the
three datasets starts diverging. The scope was again in avoiding
overfitting.

The configuration that was used consists of 2 hidden layers
with 16 neurons in each layer with the use of the logistic sigmoid
transfer function. Such configuration was chosen as a trade-off
between reaching good performances and good correlation be-
tween retrieved winds and matchups for the test dataset and

Fig. 3. PDFs of ground truth WW 3 winds (cyan), winds output by ANN (red)
and final retrieved winds (dashed black).

TABLE I
BIAS AND RMSD STATISTICS FOR ANN AND FDS FOR ALL WINDS

TABLE II
BIAS AND RMSD STATISTICS FOR WINDS BELOW OR EQUAL TO 12 m/s.

TABLE III
BIAS AND RMSD STATISTICS FOR WINDS ABOVE 12 m/s.

computational efficiency, as more hidden layers and/or neurons
translates into higher computational expenses [23]. 6 inputs
were put into the input layer made up of: DDMA, LES, Inci-
dence Angle, Range Corrected Gain or RCG [6], Latitude and
Longitude of the specular point acquisition. A simplified view
of the ANN is shown in Fig. 1. Latitude and Longitude were
also included as inputs as they provided a slight improvement
to the final results. When including latitude and longitude as
inputs to the ANN, the correlation coefficient increased by 2.5%
and the RMSE decreased by around 7%. This means that the
network uses some geographical information about the wind
speed range and distribution, but such information is not the
dominant source for estimating the winds themselves. The data
were randomly split into the two datasets composed of 1/9 and
8/9 of the total dataset, for training and validation, respectively.
This ratio was determined as a trade-off between the need to
have a training dataset representative enough of the behavior of
the overall data and the need to keep the computational time
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Fig. 4. (Left) Density plot in log-scale of WW3 winds versus CYGNSS FDS winds, for the test dataset. (Right) Density plot in log-scale of WW3 winds versus
CYGNSS ANN winds, for the test dataset. A filter of range-corrected gain higher than 3 is applied to the processed data.

Fig. 5. Bias and RMSD for the FDS winds and the ANN winds.

for the network determination acceptable. The training dataset
contained 8 million samples, the validation dataset contained the
remaining samples, around 64 million.

B. Choice of Optimal Parameters for ANN

Here we discuss how the final number of neurons and layers
was chosen for the ANN. The two metrics chosen to determine
such optimal numbers are the correlation coefficient and the
standard deviation of the error between retrieved winds and
matchups for the test dataset. Fig. 2(a) shows the variability of
the correlation coefficient R as a function of number of neurons
and hidden layers. It is shown that having two hidden layers
always produces a better correlation coefficient compared to one
hidden layer only, independent of the number of neurons. The
correlation coefficient also clearly increases with the number of
neurons in each layer, reaching a peak of 16 neurons after which
it starts to decrease for increasing number of neurons.

Fig. 2(b) shows the variability of the standard deviation of the
error as a function of number of hidden layers and neurons.

Once again, having two hidden layers produces a lower
standard deviation value than having one hidden layer for the
same number of neurons. The number of neurons providing
the lowest possible standard deviation of the error is 16, con-
sistent with the behavior of the correlation coefficient. Hence
a neural network with two hidden layers and 16 neurons in
each layer was considered as the optimal configuration for this
analysis.

C. CDF Matching

The winds retrieved from the ANN undergo a CDF matching
approach, as final step to obtain the final wind estimates. This
is a technique commonly adopted for wind speed retrievals in
scatterometry [29] recently applied also to GNSS-R [28], [36],
and consists of imposing that the CDF of the retrieved winds be
equal to the true CDF of winds speeds, where the latter is density
function (pdf) of retrieved winds is also obtained from modeled
global WW3 winds. The CDF matching approach implies that
the probability matched up to that of the true winds. Fig. 3 shows
the pdf of the winds output by the ANN in red, and how different
it is compared to the true pdf of winds in cyan. The dashed
black function represents the pdf of the final retrieved winds
after the CDF matching correction, which coincides with the
true pdf. The CDF matching step is important as it removes
the bias from the final estimates, and it improves the overall
agreement between estimates and matchups, even though at the
expense of a slight increase of the overall root mean square
(RMS) Difference compared to that obtained from the ANN
outputs without such correction. In particular, the CDF matching
correction improves the low and high wind speed estimates, as
the ANN tends to overestimate the low winds and underestimate
the high winds. In the sections that follow, the winds obtained
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Fig. 6. Illustration of global monthly gridded maps for August 2017. (Top) WW3 winds; (middle left) CYGNSS FDS winds; (Bottom left) Wind bias, computed
as WW3 winds minus CYGNSS FDS winds; (middle right) CYGNSS ANN winds; (bottom right) Wind bias, computed as WW3 winds minus CYGNSS ANN
winds.

from the combination of ANN and CDF matching step are for
brevity called ANN winds.

IV. RESULTS

Here we present the results for the ANN methodology on a
global scale. Fig. 4(b) shows a log-density plot of ANN winds
versus the WW3 matchups, for the test dataset, and it is compared
to the density plot of baseline FDS winds in Fig. 4(a) which
represent the official baseline L2 CYGNSS product. The FDS
baseline winds were obtained from a GMF trained on winds
from the Global Data Assimilation System (GDAS), which are
slightly different from WW3 winds. Moreover, they are obtained
by implementing a time-averaging step [37] which smooths out
the retrievals to improve their accuracy, at the expense of the
spatial resolution. The ANN winds are symmetrically centered
around the 1:1 line across the whole wind speed regime, and the
data spreading around the 1:1 line also appears reduced com-
pared to the FDS winds, as well as those from other algorithms

that are an improvement with respect to the baseline case [28].
There is also more agreement in the high wind speed regime
(i.e. winds higher than 15 m/s) for the ANN case, and the visible
“bump” in the FDS wind plot, where WW3 winds around 7 m/s
are mapped into CYGNSS wind speed estimations higher than
15 m/s, disappears in the ANN plot.

Fig. 5 shows global statistics for both the ANN winds and
the FDS winds, in the form of bias (mean error) and RMSD,
plotted against the reference WW3 wind speed. Both the bias
and the RMSD are slightly lower in the ANN case compared to
the FDS case, for the full range of wind speeds considered for the
analysis, consistent with the findings in Fig. 4. The improvement
is small up until winds of ∼12 m/s, even though this represents
the majority of the population. For winds above 12 m/s, the
ANN improvement is stronger, especially for the bias, and
increases for increasing wind speed. Table I illustrates the overall
performances of the ANN and FDS algorithm for all winds,
while Tables II and III show the performances respectively for
winds below 12 m/s and above 12 m/s.
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Fig. 7. Same as Fig. 6 but for September 2017.

TABLE IV
BIAS, RMSD, AND CORRELATION COEFFICIENT COMPUTED FOR ANN AND FDS CASES, FROM THE MONTHLY GRIDDED DATA FOR AUGUST AND SEPTEMBER

2017

The ANN RMSD improves by 15% compared to the FDS
case. Improvements similar to those observed for all winds are
obtained for winds below 12 m/s, as these represent the majority
of the population. For winds above 12 m/s, the errors are higher in
both cases, and even the ANN approach is no longer unbiased,
but there is still a ∼17% improvement in the bias, and a 6%
improvement in the RMSD.

Figs. 6 and 7 show a comparison between monthly gridded
WW3 wind speeds, CYGNSS ANN wind speeds, and FDS wind
speeds. The grids are 0.5° latitudes x 0.5° longitudes in size, and
Figs 6 and 7 show maps respectively for August and September
2017. For August 2017 (see Fig. 6) the maps of ANN wind
speeds agree well with WW3, and the agreement is globally
better than that achieved with FDS winds. The bias between
WW3 and FDS winds shows instances of strongly positive

biases, which are much attenuated in the case of ANN. The
improvement in the bias map for the ANN case compared to the
FDS case is also clearly visible for September 2017, especially
off the eastern and western coasts of South America. A very
good agreement is also observed in Fig. 8, between ANN and
WW3 winds for October and November 2017. The bias patterns
in the ANN case appear quite consistent between September and
November 2017, while they are overall stronger in the month of
August 2017. Stronger biases can be seen around the coastal
regions for all months, most likely due to more complex ocean
and wind processes, different from the open ocean, as well
as possible land contamination in the CYGNSS data. Overall
monthly statistics of bias, RMSD and correlation coefficient are
computed from the gridded data, separately for the two months,
and reported in Table IV. The values of bias and RMSD are low
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Fig. 8. Illustration of global monthly gridded maps for October (left) and November (right) 2017. The top row shows CYGNSS ANN winds, the bottom row
shows the global monthly bias with respect to WW3 winds.

for both FDS and ANN and for all months, but ANN typically
outperforms the baseline approach, especially for what concerns
the RMSD which improves by more than 20%.

V. CONCLUSION

Feed-forward ANNs, commonly employed in remote sensing
and Earth Observation, were applied to estimate wind speeds
from GNSS-R CYGNSS data. The network requires five input
parameters, and the optimal number of layers and neurons were
chosen based on simple error and correlation metrics. The ANN
approach was followed by the application of a CDF matching
technique, similar to what is done conventionally in scatterom-
etry. The resulting ANN winds agreed very well with the wind
matchups from the WW3 model. The error statistics provided
by the ANN are improved with respect to the baseline error, and
over the full dynamic range of wind speeds. In particular, the
ANN provided unbiased wind estimates over a dynamic range
of wind speeds up to 32 m/s, with a RMSD of 1.51 m/s, which
is the lowest seen so far in literature for wind retrieval from
CYGNSS data. Global wind maps from August to November
2017 agree with WW3 winds almost everywhere. The compar-
ison with baseline FDS winds which represent the official L2
CYGNSS wind product highlights improved winds estimations
using the ANN methodology, demonstrating that ANNs were a
useful and possibly better method for wind speed estimations
than those routinely adopted for CYGNSS at present. The
approach presented could be in principle applied to the entire
CYGNSS dataset to produce an enhanced wind speed product
from CYGNSS. The ANN methodology presented here also
suffers from some limitations, such as the difficulty to estimate
unusual occurrences of very low or very high wind speed (such
as those in tropical cyclones) and the need for a large training set

to obtain accurate retrievals over a time frame of several months
or years. The tendency of ANN to overestimate the lower values
and underestimate the higher ones has been already pointed out
in past works (e.g. [17]). It can be explained by considering
that the training is based on an iterative minimization of the
error variance on the entire training set, in which highest and
lowest values are in general poorly represented due to their low
occurrence. Moreover, the reduced sensitivity of the CYGNSS
data to the highest values of wind speed could also contribute to
the high wind underestimations.

Further refinements of the ANN architecture and of the
sampling strategy for generating the training set could allow
reducing the amount of data required for training and therefore
enabling the extension of the analysis to longer time periods. In
this respect, it should be noticed that the ANN training is the only
time demanding step in setting up the retrieval algorithm, while
applying a trained ANN to a dataset other than the training set
can be achieved in near real time. Ongoing work will concentrate
on further refinement of the ANNs, using a larger dataset rather
than only four months of data to train and test the network, and
providing further inputs to the ANN—such as GPS satellite ID,
CYGNSS satellite ID, and CYGNSS antenna ID—to possibly
mitigate some of the calibration problems highlighted so far
in CYGNSS [28], [38]. The inclusion of wave information
sufficiently decorrelated with wind speed as further input to
the network could also contribute to an additional improvement
of the final retrieved winds. The performance of the network
will be also be tested on a temporally blind dataset. Using a
dataset that is completely independent temporally from the data
that has been seen by the neural network when training will
further validate the results. As in the case of scatterometry [17],
[18], an ANN approach could also be implemented and tested to
retrieve winds in non-ordinary conditions, such as over tropical
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storms or cyclones. The CYGNSS wind speed estimations over
such storms currently suffer from large noise and errors in
the retrieval, and ANNs or more in general machine learning
approaches could be attempted to improve the retrievals in these
special weather circumstances.
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