895 research outputs found

    A new blind adaptive antenna array for GNSS interference cancellation

    Get PDF
    This paper introduces a new blind adaptive antenna array as a possible solution to the interference cancellation problem. This new technique is compared to three classical ones over two different sensor radiation patterns. Special attention is paid to the array compatibility with a conventional GNSS receiver. A wide radiation pattern sensor is shown to improve the positioning accuracy by maximizing the satellite constellation visibility. Finally, the new processor demonstrates its superiority in term of positioning accuracy in presence of strong interferences. However, its phase response may make it incompatible with classical GNSS receivers. Some efforts must be done to stabilize it

    Adaptive multibeam antennas for spacelab. Phase A: Feasibility study

    Get PDF
    The feasibility was studied of using adaptive multibeam multi-frequency antennas on the spacelab, and to define the experiment configuration and program plan needed for a demonstration to prove the concept. Three applications missions were selected, and requirements were defined for an L band communications experiment, an L band radiometer experiment, and a Ku band communications experiment. Reflector, passive lens, and phased array antenna systems were considered, and the Adaptive Multibeam Phased Array (AMPA) was chosen. Array configuration and beamforming network tradeoffs resulted in a single 3m x 3m L band array with 576 elements for high radiometer beam efficiency. Separate 0.4m x 0.4 m arrays are used to transmit and receive at Ku band with either 576 elements or thinned apertures. Each array has two independently steerable 5 deg beams, which are adaptively controlled

    Ultra-Wideband Secure Communications and Direct RF Sampling Transceivers

    Get PDF
    Larger wireless device bandwidth results in new capabilities in terms of higher data rates and security. The 5G evolution is focus on exploiting larger bandwidths for higher though-puts. Interference and co-existence issues can also be addressed by the larger bandwidth in the 5G and 6G evolution. This dissertation introduces of a novel Ultra-wideband (UWB) Code Division Multiple Access (CDMA) technique to exploit the largest bandwidth available in the upcoming wireless connectivity scenarios. The dissertation addresses interference immunity, secure communication at the physical layer and longer distance communication due to increased receiver sensitivity. The dissertation presents the design, workflow, simulations, hardware prototypes and experimental measurements to demonstrate the benefits of wideband Code-Division-Multiple-Access. Specifically, a description of each of the hardware and software stages is presented along with simulations of different scenarios using a test-bench and open-field measurements. The measurements provided experimental validation carried out to demonstrate the interference mitigation capabilities. In addition, Direct RF sampling techniques are employed to handle the larger bandwidth and avoid analog components. Additionally, a transmit and receive chain is designed and implemented at 28 GHz to provide a proof-of-concept for future 5G applications. The proposed wideband transceiver is also used to demonstrate higher accuracy direction finding, as much as 10 times improvement

    Interference Cancellation Using Power Minimization and Self-coherence Properties of GPS Signals

    Get PDF
    This paper presents the performance analysis of two digital beam forming techniques used in conjunction with a software GPS receiver to mitigate interference to GPS signals in interference environment. The first method is the constrained minimum power (MOP) method. The second method is the so-called self-coherence restoral (SCORE) method. Both experimental and simulation data are used in the study. The study was performed using experiment data collected in an anechoic chamber to obtain GPS and interference signals. A two by two GPS antenna array and a four channel radio frequency front end were used to collect simulated GPS data generated using hardwarebased simulator in controlled interference environment. Three types of interference signals are deployed in the experiments: FM chirp, binary phase shift key, and broadband. The interference power levels used were +20, +30, and +40 dB above GPS signal power. A software GPS receiver was used to perform acquisition of GPS signals to evaluate the performance of the beam forming algorithms. The preliminary result showed that the MOP method can effectively mitigate all three types of interference at all power levels if a single interference source is present. Experiments using multiple broadband interference sources were also analyzed and our results shown that the effectiveness of the MOP method diminishes as the interference signal power increases and ceases to function at the +40 dB level. The SCORE method does not exhibit consistent performance for the experimental data. This is consistent with our simulation results which show that for the SCORE algorithm to generate satisfactory results, sufficient number of antenna elements is necessary even if there is no interference source present. The number of antenna element is determined by the number of satellites available, as well as the number of interference sources. The experimental and simulation results are discussed in this paper

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication

    Analysis of Ultra Wide Band (UWB) Technology for an Indoor Geolocation and Physiological Monitoring System

    Get PDF
    The goal of this research is to analyze the utility of UWB for indoor geolocation and to evaluate a prototype system, which will send information detailing a person’s position and physiological status to a command center. In a real world environment, geolocation and physiological status information needs to be sent to a command and control center that may be located several miles away from the operational environment. This research analyzes and characterizes the UWB signal in the various operational environments associated with indoor geolocation. Additionally, typical usage scenarios for the interaction between UWB and other devices are also tested and evaluated
    • …
    corecore