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ABSTRACT

ANTI-JAM GPS CONTROLLED RECEPTION PATTERN

ANTENNAS FOR MAN-PORTABLE APPLICATIONS

FEBRUARY 2020

JEFFREY A. MALONEY

BS, UNIVERSITY OF MASSACHUSETTS AMHERST

MS, UNIVERSITY OF MASSACHUSETTS AMHERST

PhD, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed By: Professor Ramakrishna Janaswamy

and Professor Do-Hoon Kwon

Military GPS receivers provide crucial information to soldiers in the field, however,

the performance of these devices is degraded by in band RF interference, making GPS

susceptible to jamming. Anti-jam techniques for aircraft and vehicular platforms have been

developed, but at present there is no system for dismounted soldiers. There is a need for

an anti-jam system which meets the demands of a dismounted soldier and conforms to the

size, weight, and power requirements of a portable device.

A controlled reception pattern antenna, or CRPA, is a potential solution for jammer mit-

igation. These devices work by steering reception pattern nulls toward the jammer direction,

reducing the jammer power which reaches the GPS receiver. Prior CRPA realizations have

been designed for use on vehicular and aircraft applications, however, these platforms do

not suffer from the same limitations as a man-portable CRPA. Three considerations which

are more pertinent for man-portable designs than prior work are (i) distributed antenna

element positions and orientations dynamically change during use changing the reception
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pattern characteristics, (ii) the user is lower to the ground and moves through the environ-

ment meaning that multipath propagation can have a greater effect on CRPA performance,

and (iii) the size weight and power constraints for a portable system limit the number of

antenna elements reducing the degrees of freedom that can be used for cancellation.

To address these challenges, a framework for man-portable CRPA modeling is presented.

This includes development of efficient modeling methods which enable investigations into el-

ement perturbations to address the dynamic orientation problem. These and other methods

are presented in Chapter 3, along with a discussion of the relative strengths and weaknesses

of each. Additionally, a mixed scattering channel model is applied to the CRPA reception

patterns, combining diffuse and specular reflection in Chapter 4. Discussion of this model

centers around the eigenvalues of the signal covariance matrix and the effect of coherence

between multipath components. Following this, Chapter 5 examines the performance of po-

larimetric CRPAs and space-time adaptive processing for man-portable CRPAs with limited

degrees of freedom.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Since its inception in the 1960s, the Global Positioning System has developed from a

military navigational system to a widespread commercial service. Policy makers have had

to address trade-offs between commercial and national security interests since 1983 when

the decision was made to make GPS available to commercial industries such as aviation and

surveying [1]. As a result, GPS signal characteristics, such as the carrier frequencies and

bandwidths, are well known to consumers as well as hostile actors, making GPS receivers

vulnerable to attack.

GPS signals originate from satellite vehicles in medium earth orbit, ∼20,200 km above

the earth’s surface, and the power available to terrestrial users is low, on the order of

-130 dBm [2]. Terrestrial users estimate the approximate distances or pseudoranges to

multiple satellites to infer their position. These estimates depend on acquiring and tracking

very weak signals which can easily be overwhelmed by in band interference. Because of the

already low signal power and the well known spectral characteristics, it is possible for an

adversary to intentionally introduce RF interference into the GPS frequency bands, referred

to as jamming, and deny the user position, navigation, and timing (PNT) data.

The effects of both intentional jamming and unintentional RF interference may be

reduced by the GPS receivers antenna reception pattern. A reception pattern which has high

gain directed towards satellites and low gain towards sources of interference will reduce the

jammer to signal ratio compared to an isoptropic antenna. In cases where the GPS receiver

is stationary and the interference is assumed to come from low elevations, a fixed reception
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Figure 1.1: Man-portable CRPA concept.

pattern antenna (FRPA) may be employed to reduce gain at the horizon by at least 35 dB

compared to zenith [3]. However, for man-portable applications such as a GPS receiver

for a dismounted soldier, the receiver orientation and location will dynamically change and

the reception pattern must adapt with the changing interference environment. A controlled

reception pattern antenna (CRPA) [4] is a device that combines time-delayed and scaled

received signals on multiple antenna elements to dynamically alter the reception pattern,

placing pattern nulls in the angle-of-arrival of a hostile interference source, or jammer.

Adaptive algorithms are used to control the complex-valued weights that are applied to

each antenna to alter the reception pattern based on received signal statistics [5]. The

number of independent jammers which can be mitigated by a particular CRPA design is

limited by the number of elements used in that design’s construction. In general, a CRPA

comprising N elements has N − 1 degrees of freedom which may be employed to cancel

N − 1 jammers.

Anti-jam GPS CRPAs have been studied for large platforms such as aircraft before [6],

however no solutions for dismounted soldiers currently exist. There is a need for a robust

anti-jam system capable of allowing ground troops to maintain PNT service in congested

and contested environments. However, a man-portable CRPA introduces unique design

challenges, such as battery requirements which substantially limit processing power and

2



hardware, necessitating an efficient, low-power design. Additionally, the size, weight, and

power (SWAP) constraints limit the number of CRPA elements that could be used, reducing

the spatial degrees of freedom. For a given number of antenna elements, additional degrees

of freedom can be introduced by utilizing dual-polarized antennas, or tapped delay lines [7].

However, both of these methods increases the power demands by either doubling the number

of RF channels or requiring a larger digital processor, respectively.

Degrees of freedom outside of the spatial domain are of interest, as the number of pattern

nulls is limited by the number of antenna elements, and physical propagation environments

often present multiple paths for electromagnetic waves between antennas [8]. In a multipath

environment, a single jammer reflecting off objects in the surrounding medium can present

wavefronts from multiple directions to a CRPA, and may exhaust a CRPA’s degrees of

freedom. Analytic and physical channel models have been developed for various multipath

environments [9], though their application to null steering has not been reported. The

effects of GPS multipath components on receiver performance has been studied with an

emphasis on the errors introduced into the receiver [10], but multipath considerations for

jammers have not been explored. The characterization of an anti-jam CRPA in multipath

environments is necessary to inform design choices, such as the necessary number of elements

and the inclusion of dual-polarized elements or STAP techniques to meet the needs of today’s

warfighter.

1.2 Related Work

Spatial filtering in antenna arrays with the use of adaptive algorithms is a mature

field [11–14] and investigations into adding degrees of freedom outside of the spatial domain

have been performed. Polarimetric techniques can be employed to introduce degrees of

freedom in the polarization domain [15–18]. CRPA elements with two orthogonal ports,

such as dual-linear antennas have been reported to cancel jammers without increasing the

CRPA footprint. Time domain degrees of freedom may be introduced with tapped delay

lines, a technique referred to as space-time adaptive processing (STAP) [19–21]. Similarly,

with multiple samples from each antenna, Fourier transforms have been used on data from
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each antenna for space-frequency array processing (SFAP) [23, 24]. The real-time Fourier

transforms are computationally intensive, making SFAP a poor candidate for the current

purpose. Each of these techniques increases the complexity of a CRPA, whether through

introducing additional hardware, requiring larger processors, or both.

Investigations into non-planar CRPA configurations [25,26] and flexible textile antennas

[27] have also been performed, as have models with limited degrees of freedom [28,29]. Small

conformal arrays differ from larger phased arrays, and concepts such as a array factors

are of limited use for arrays comprising a small number of elements with diverse element

patterns [30].

Multipath environments have been studied, and a large body of propagation models

exists, primarily for use in communications engineering. It is common practice to classify

propagation models into one of two categories, these being physical and analytic [8, 31],

where physical models aim to incorporate the electromagnetic characteristics and analytic

models are based on assumptions about the impulse response of the channel. Analytic mod-

els may be developed to include many effects, such as polarization [32], however they do

not capture the complete electromagnetic environment. Some physical models rely on geo-

metrical assumptions about the locations of scattering objects [33,34]. Several standardized

models incorporate measured results for specific frequency bands and types of environments.

The model presented in Chapters 4 and 5 is best described as a physical model.

Additionally, work has been done in the domain of direction-of-arrival estimation in

multipath environments under assumptions of coherent and incoherent scattering [35–37].

For the direction finding problem, coherency between incoming signals presents challenges

and introduces estimation errors [38]. On the contrary, coherence in the jamming problem

can actually improve CRPA performance as will be shown in Chapter 4. The gaps identified

above must be addressed to successfully design a man portable system.

1.3 Organization and Contributions

Considerations for a man-portable anti-jam GPS receiver differ from previous anti-jam

efforts in two crucial ways. First, greater SWAP constraints exist for man-portable systems.
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These constraints put a limit on the degrees of freedom available for jammer mitigation.

Second, the operating environment will likely put the CRPA low to the ground and in

close proximity to many scattering objects, making multipath a larger concern than for air-

craft or vehicle mounted systems. The communications and multiple-input multiple-output

(MIMO) literature often relies on analytic models for multipath environments divorced from

electromagnetic considerations. This work aims to comprehensively address the jamming

problem in realistic electromagnetic environments and inform the design considerations for

a SWAP constrained anti-jam GPS CRPA.

This document is structured as follows: Chapter 2 provides background on the algo-

rithms available for null-steering as well as GPS satellite coverage and the electromagnetic

environments. Following this discussion, multipath channel models represented from the

literature are outlined. Chapter 3 provides the modeling techniques used in simulating

CRPA operation in a line-of-sight environment. The strengths and uses of each of these

techniques are highlighted and the accuracy of predictions made with either are compared.

The chapter closes with anechoic chamber measurements of synthesized nulls. A scatter-

ing model which includes both specular and diffuse reflection is introduced in Chapter 4.

This model is used to analyze the spectral characteristics of the partial covariance matrices

under different scattering assumptions. A synthesized time-domain scattering example is

then provided showing agreement with the previous results. Chapter 5 expands the mixed

scattering model to include polarization effects and also investigates STAP techniques for

mitigating wideband jammers. Two STAP constraints are presented and compared, and a

key strength of STAP over other techniques is demonstrated, this being the ability to mit-

igate wide band interference. Finally, Chapter 6 summarizes the conclusions drawn from

this work.

Some of the work contained herein has been presented in conference [39–42] and has

led to one journal paper [43]. The novel contributions of this work are:

1. The verification process described in Section 3.3.1. A need arose to confirm the

null-steering suite generated in MATLAB using commercially available full-wave elec-

tromagnetic software. However, the specific requirements, viz. control over current
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excitations, were not supported for that specific model. Therefore, a method involv-

ing non-radiating networks and S-parameter renormalization was developed to confirm

the null-steering predictions of other models.

2. The specular reflection factor defined in Section 4.3. A parameter, ς, is introduced

and used to balance between specular and diffuse reflection from a scattering object.

Objects in a multipath environment are modeled having both specular and diffuse

properties, with the relative power in each of these controlled by ς. This differs from

the Ricean fading factor, K, in that the latter is the ratio of line-of-sight to scattered

power, whereas ς has no effect on the line of sight component and instead controls the

relative power in coherent and incoherently scattered waves.

3. The analysis of the eigenvalues of partial covariance matrices in chapter 4. The struc-

ture of the signal covariance matrix, R, has been documented in the literature, in

particular for subspace decomposition methods for direction finding. However, this

analysis focuses on the eigenvalues in the signal space alone, and how they relate to

specular and diffuse scattering.

4. The application of the scattering matrix, Γ, of the form of (5.4) to the null-steering

problem. Similar forms of Γ have been used to characterize bulk material for pas-

sive and active radiometry. However, a matrix of this form has not been randomly

parameterized and used for investigations into anti-jam CRPAs prior to this.

5. The comparison between the two STAP constraints in Section 5.2.1. Many STAP

applications assume known steering vectors. The blind null-steering problem, i.e.

canceling interference with no estimate of the directions to the desired signals, requires

only that a single reference element remain on. The two constraints in this work

assume no known steering vectors, and differ in that one adds multiple signals at the

desired frequency coherently.

The following pages lay out flexible techniques for modeling anti-jam CRPAs in dynamic

electromagnetic environments. Methods for efficiently simulating CRPA geometries are

described and compared with higher fidelity full-wave modeling methods. Additionally, a
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parametric physical channel model is outlined which can be modified for different assumed

terrains and environmental objects.

Increasing the degrees of freedom of a CRPA is essential for man-portable application,

therefore polarimetric and STAP CRPAs are considered. Given the SWAP limitations and

multipath considerations of a man-portable CRPA, this work argues for the use of STAP

over dual-linear elements as a method for increasing degrees of freedom and overall CRPA

performance. Polarimetric methods require a greater amount of hardware, increased power

and weight, and do not offer the same benefits of STAP. Conversely, time samples can be

implemented digitally and have an advantage over polarimetric techniques in mitigating

wide band jammers. The coming discussion will elucidate these claims, but first the nec-

essary foundations must be laid out. With that, attention is now turned to null-steering

algorithms and electromagnetic considerations.
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CHAPTER 2

BACKGROUND

2.1 Adaptive Null-Steering Algorithms

For a CRPA comprising multiple antenna elements, the received signals present at each

antenna port may be arranged as a column vector, x. The port voltage on the ith port,

[x]i, comprises GPS signals, Gaussian noise, and any interfering signals present. The CRPA

output, y, is a weighted sum of of the port voltages,

y = w†x, (2.1)

where {•}† denotes the conjugate transpose. The weight vector, w, comprises the complex

conjugates of the applied weight coefficients used to find y. Jamming is mitigated by trying

to solve a minimization problem, namely minimizing the output power

‖y‖2 = E
[
w†xx†w

]
= w†Rw, (2.2)

where E [•] denotes the expectation operator and R = E
[
xx†

]
is the covariance matrix

of the received vector x. The linearly constrained minimization problem is subject to the

constraint,

w†e = c, (2.3)

where e is the constraint vector and c is a constant, say c = 1. Different values of e may be

used to achieve different goals, e.g., e can be selected as the steering vector in the direction
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of the desired signal,

[e]i = [ψψψ]i
1√
N
ejk(xi sin θ cosφ+yi sin θ sinφ+zi cos θ). (2.4)

In this case, referred to as Capon beamforming [52], the goal is to maintain unit gain in

the direction of a desired signal, given by (θ, φ). However, when the CRPA is subject

to the dynamic orientation changes anticipated for a man-portable system deployed in

the field, the steering vector will constantly change. Knowledge of the bearings to GPS

satellite vehicles (SVs) is not readily available or easily estimated under dynamic orientation

changes. Inertial data and feedback from the GPS receiver could be used to overcome this

limitation with considerable computational resources, though this is beyond the scope of

this work, which considers a modular system designed to work with existing receivers.

Selecting e = [1, 0, 0, ..., 0]T , sometimes referred to as power inversion, sets a reference

element, or individual antenna, which will always be weighted with a value of 1. The

remaining antenna elements are then used to cancel interference impinging on the CRPA

from different directions, leaving the low-power GPS signals unaffected by adaptive nulling

over much of the visible region. Another useful method is to employ a CRPA comprised

of dual-linear elements, i.e. two co-located LP antennas, and choose e = [1,−j, 0, ..., 0]† to

maintain a synthesized CP reception pattern [16].

In all these cases, the optimal weight vector is given by

w =
R−1e

e†R−1e
, (2.5)

which is found using Lagrange multipliers [53]. Lagrange multipliers are used to optimize

a real-valued function of complex variables subject to one or more linear constraints. Geo-

metrically, equation (2.5) finds the minimum point in the intersection of a convex surface

and plane.

The Lagrangian, H, is defined in terms of the constraining function, g, the cost function,

f , and the Lagrange multiplier, λ,

H(w) = f(w) + λ g(w). (2.6)
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Critical points of H occur when the gradient of H vanishes, or equivalently when ∇f is

parallel to ∇g with a proportionality constant of λ. If the cost function is complex valued,

the real-valued Lagrangian is defined in terms of a complex Lagrange multiplier,

H = f + Re [2λ∗g] = f + (λ∗g + g∗λ) . (2.7)

Multiple constraints determined by a system of equations with different Lagrange multipliers

for each constraining function can be written in vector notation as

H(w) = f(w) + λλλ†g(w) + λλλTg∗(w). (2.8)

The gradient with respect to w is defined by

[∇H]i =
∂H

∂w∗i
=

1

2

[
∂H

∂ui
+ j

∂H

∂vi

]
, (2.9)

where ui and vi denote the real and imaginary components of wi, respectively. The cost

function, f , is the output power of the CRPA given by (2.2), the gradient of which is

∇wf(w) = ∇ww†Rw = Rw. (2.10)

For multiple constraints on the M × 1 weight vector, as in (2.8), consider the system of N

linear equations

Cw = c, (2.11)

where C is a N ×M matrix, c is a N × 1 vector, and the system of constraining functions

is defined by

g(w) = Cw − c. (2.12)

Combining this with (2.8) and taking the gradient gives

∇wH(w) = ∇w

(
f(w) + λλλ†g(w) + λλλTg∗(w)

)
= Rw + C†λλλ. (2.13)

Expressions for w and λλλ are obtained by setting (2.13) to zero and substituting this into

10



(2.11) to obtain

w = R−1C†λλλ ,
(
CR−1C†

)−1
c = λλλ. (2.14)

For the N = 1 case of (2.3), the single constraint vector e replaces C† and (2.5) is recovered.

Additional degrees of freedom in the time-domain may also be introduced by taking x

to be a MN × 1 vector comprising M time samples of the N antenna element ports. This

is referred to as STAP, which is discussed in more detail in Sections 2.2 and 5.2.

2.1.1 Sample Matrix Inversion

If R is known, the optimal weights can be found from (2.5), however R often must

be estimated from observations of x. This is done by taking an average value over some

number of samples

R̂ =

N∑
n=1

x(n)x†(n). (2.15)

If R is stationary, only one matrix inversion is necessary, however a dynamically oriented

CRPA will not have a stationary covariance matrix and multiple inversion are necessary. A

windowed average may be employed in which

R̂(t) =
t∑

n=t−N
x(n)x†(n), (2.16)

though this requires some decisions on how long of a window to use to balance the changing

R and the computational resources required to perform multiple matrix inversions.

2.1.2 Conjugate Gradient Method

The Conjugate Gradient (CG) Method is a variation of the steepest descent method

that can be used for solving systems of linear equations of the form Ax = b. Setting

(2.13) for the single constraint case to zero gives just such a system, Rw = e. The theory

behind CG is to take steps in directions, di, that are R-conjugate, or orthogonal after being

transformed by R,

d†iRdj = δij , (2.17)

11



where δij = 1 if i = j and 0 otherwise. Stepping in this way, CG arrives at a solution

that minimizes Rw − e for a system of N equations in N steps or fewer [56]. The basic

CG algorithm [57] works on a symmetric positive definite matrix A, but extension to a

Hermitian matrix R is straightforward [58].

Following an initial guess of w(0), CG is applied by taking steps along different search

directions, d(i), by a step size of α(i). The first search direction is chosen to be the residual,

r(i) = e(i) −Rw(i), at time i = 0. The step size is chosen to remove the portion of the

error term e(i) = w −w(i) parallel to d(i). The next search direction is chosen from the

conjugate Gram-Schmidt process. The equations for CG are as follows:

d(0) = r(0) = e(0)−Rw(0),

α(i) = r†(i)r(i)
d†(i)Rd(i)

,

w(i+ 1) = w(i) + α(i)d(i),

r(i+ 1) = r(i)− α(i)Rd(i),

β(i+ 1) = r†(i+1)r(i+1)
r†(i)r(i)

,

d(i+ 1) = r(i+ 1) + β(i+ 1)d(i).

(2.18)

Here, β(i + 1) is the Gram-Shmidt constant at time i + 1. An initial guess of w(0) = e is

an adequate starting place and will converge in i ≤ N steps. The weight vectors produced

from (2.5) and (2.18) are linearly dependent and differ only by a scalar factor.

The Conjugate Gradient Method has seen much use in solving systems where N is

large and is adept at handling sparse matrices in fewer than N steps. CG also works under

the assumption that R is known [59]. With a non-stationary R and small N , as in the

man-portable CRPA case, CG is not an obvious choice.

Linear constraints and uncertainty in R may be included in CG by a modified imple-

mentation of a generalized sidelobe canceler (GSC). It is possible to construct a GSC that

is equivalent to the linearly constrained Frost’s Algorithm described below [13]. Starting

from this GSC structure it is possible to derive a linearly constrained CG algorithm which

converges to the same weight vector more rapidly [60]. This method also estimates the
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covariance matrix using an exponentially weighted average,

R̂(i) = γR̂(i− 1) + (Px(i)) (Px(i))† , (2.19)

where P is the same projection matrix defined below in (2.27). The constrained CG method

addresses both the linear constraints and the uncertainty in R mentioned above, and shows

promising convergence rates. However, this method requires far more mathematical oper-

ations per update, and an implementation that meets the SWAP constraints of this work

would introduce difficult challenges.

2.1.3 Gradient Descent: Frost’s Algorithm

Frost developed an iterative algorithm which generates the weight vector at time k+ 1

by moving in the opposite direction of the gradient away from the weight vector at time k,

wk+1 = wk − µ∇wH(w) = wk − µ
(
Rwk + C†λλλ

)
. (2.20)

By enforcing the constraining equations on the updated weight vector,

c = Cwk+1 = C (wk − µ∇wH(w)) = C
(
wk − µ

(
Rwk + C†λλλ

))
, (2.21)

an expression for the Lagrange multipliers is obtained,

λλλ =
−1

µ

(
CC†

)−1
(Cwk − µCRwk − c) . (2.22)

Plugging this back into (2.20) leads to

wk+1 = wk−µRwk−C†
(
CC†

)−1
Cwk + C†

(
CC†

)−1
CµRwk + C†

(
CC†

)−1
c. (2.23)

The projection matrix, P, and initialization weight, w0, are defined as

P = I−C†
(
CC†

)−1
C , w0 = C†

(
CC†

)−1
c, (2.24)
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to obtain

wk+1 = w0 + P [wk − µRwk] . (2.25)

In practice, the covariance matrix R is not known, and so an estimate must be intro-

duced. Frost proposed a single sample estimate from the previous received vector

R̂k = xkx
†
k. (2.26)

For the N = 1 dimensional constraint system of (2.3), P and w0 of (2.24) become

P = I− ee†

‖e‖2
, w0 =

e

‖e‖2
c . (2.27)

Using the single sample estimate of (2.26), and choosing c = 1 and a normalized constraint

vector (‖e‖ = 1) results in

wk+1 = e + P [wk − µxky
∗
k] . (2.28)

2.1.4 Gradient Descent: LMS

The LMS algorithm minimizes the mean square error between the desired signal dk and

the received vector xk by gradient descent. The weights at time k applied to xk provide an

estimate for the desired signal, d̂k, and the error, εk, is defined as the difference between

the desired signal and the estimate,

εk = dk − d̂k = dk −w†kxk. (2.29)

The LMS algorithm is derived by setting up a steepest descent search for the weight vector,

wk+1 = wk − µ∇w‖εk‖
2, (2.30)

and choosing as an estimate for the gradient,

∇̂w‖εk‖
2 = εkx

∗
k. (2.31)
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Note that when the gradient is zero, the error is orthogonal to the received vector. Plugging

this into (2.30) yields the LMS weight update equation

wk+1 = wk − µεkx
∗
k = wk − µ

[
dkx

∗
k −

(
xkxkwk

)∗]
. (2.32)

This algorithm requires the generation of a desired signal for comparison with the re-

ceived vector, which adds to the complexity of its implementation. The LMS algorithm also

can exhibit drift over time from errors due to finite precision arithmetic, eventually reaching

a state that no longer satisfies (2.3) [61]. This is not a large concern on modern comput-

ers, but the issue can arise for embedded systems which use fixed point representations of

numbers and have power requirements which increase with the system precision. Given the

SWAP constraints of this work, Frost’s Algorithm is the preferred, simpler option.

2.2 Space Time Adaptive Processing Overview

Two techniques which utilize multiple time samples from each CRPA element to mit-

igate wide band interference are STAP and space-frequency adaptive processing (SFAP).

Unlike space-only array processing, the nulls produced from STAP and SFAP span a larger

frequency band and are not solely dependent on the phase differences of the jammer sampled

at different point in space. Additionally, for an N element array with M − 1 tapped delay

lines added, the number of degrees of freedom increases to MN − 1. However, the phase

response of a STAP CRPA at GPS frequencies can introduce bias into the GPS receiver’s

position estimate [19].

There is an additional computational load for SFAP compared to STAP, as processing

occurs in the frequency domain and real-time Fourier transforms are necessary. Additionally,

for a SFAP system to be equivalent to a corresponding STAP system, overlapping traces

must be employed [24]. These factors indicate that SFAP is not the preferred method for

man-portable applications.

The STAP CRPA input vector, x(k), includes samples of the received voltages on the

N ports at time k, as well as the previous M−1. Time domain degrees of freedom allow for
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the cancellation of wideband jammers, as will be seen is Section 5.2, as well as frequency

selective filtering. Because of this, STAP is widely used in radar applications [62]. If a

radar with a fixed position is assumed, the waves launched by the radar and reflected by

stationary objects in the environment will return at the same center frequency with which

they originated. Moving objects, on the other hand, will induce a Doppler shift on the

returning waveform, and reflections from different types of objects can be discriminated in

frequency. In this way, clutter, or stationary environmental objects such as mountains, may

be removed from the measurement. The same principles apply to moving radars, though

relative velocities and Doppler shifts must be accounted for.

Suppression of clutter in the Doppler domain is advantageous for finding moving targets

in uncontested environments, however, if jammers are present, clutter suppression can ac-

tually have an adverse effect by increasing the sidelobe [63]. Jammers with angles-of-arrival

off the main beam deliver more power to the receiver because of the increased sidelobe level,

resulting in worse performance. However, radars implementing some form of STAP are able

to mitigate both the clutter and the jammer, due to the spatial degrees of freedom and the

adaptive power minimization techniques.

The basic formulation for STAP techniques is identical to those considered above for

the single time sample cases. In fact, the formulation of (2.28) originally presented in [64]

assumed multiple tapped delay lines as part of the CRPA architecture. Additionally, the

optimal STAP weights in terms of maximizing the signal to interference plus noise ratio

(SINR) is found from (2.5) when e is the steering vector for a particular direction and at a

particular frequency. Much research has been done to make STAP more computationally ef-

ficient for radar applications, as radars often comprise a large number of elements, including

multi-stage STAP applied to sub-arrays and rank-reduction techniques [65]. However, for a

CRPA with a small number of elements, these methods are neither practical nor necessary.

2.3 Satellite Coverage

GPS receivers work by simultaneously tracking the carrier phase of multiple GPS sig-

nals. Both GPS Coarse Acquisition (C/A) code and the military P(Y) code utilize binary
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phase shift keying (BPSK) with chip rates of 1.023 MHz and 10.23 MHz respectively. Satel-

lite ephemeris data, including satellite constellation positions and timing, are transmitted

in a message signal at a rate of 50 Hz.

Each SV has a unique pseudorandom-noise (PRN) code, with low cross-correlation

between codes and low autocorrelation between individual bits in the PRN sequence. A

typical receiver generates three replica codes for each SV it is tracking, these being early,

prompt, and late replicas. Code tracking loops integrate the product of these replicas with

the received signal to find the correlation between the recieved signal and the replicas, and

shift the replicas in time to maximize the prompt correlation. The amount of time by which

these replicas are shifted is used to generate an estimate of the time delay and distance, or

psuedorange, to a satellite. Four SVs are necessary for a position solution, but in practice

receivers may track as many as 11 SVs for a more accurate solution.

Carrier tracking loops offer greater accuracy, especially when the receiver is moving,

however these are also more susceptible to jamming [48]. When the carrier tracking loop is

lost, the code tracking soon fails as well. This can be managed to some extent in receivers

that utilize inertial measurement units (IMUs) to estimate receiver velocity, though this is

not a current capability of the DAGR receiver used by soldiers in the field.

The GPS specification gives a minimum power level of -158.5 dBW for C/A code and

-161.5 dBW for P(Y) code at the L1 frequency (1.57542 GHz) for SVs at an elevation

of 5◦ or greater above the horizon [2]. These signals are transmitted with right hand

circular polarization (RHCP) and that minimum power level is assumed to be uniform for

all directions of arrival with elevation greater than 5◦, though in practice it exceeds this

value for many elevation angles. The received signal carrier power as a function of the

angle of arrival, Cs (θ, φ), depends on the CRPA reception pattern and polarization in that

direction.

The CRPA elements are assumed to have white Gaussian noise present due to the

ambient background temperature and thermal noise in the front end electronics. Jam-

mer interference can be treated as equivalent additive Gaussian noise, and in doing so the
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Figure 2.1: Probability of having fewer than x satellites in view as a function of satellite cov-
erage for increasing values of x. Four satellites are necessary for an unambiguous
position solution.

effective carrier to noise ratio is defined as [10],

(Cs/N0)eff =

[
N0

Cs
+

Cj
CsQRc

]−1

, (2.33)

where N0 is the noise power in a 1 Hz bandwidth, Q is the jamming resistance quality factor

(a function of the spectral correlation between the jammer and the GPS signal) and Rc is the

chip rate of the PRN code, 1.023 MHz and 10.23 MHz for C/A and P(Y) code, respectively.

Here, the jammer power, Cj (θj , φj), depends on the jammer direction of arrival and may

be expanded to include multiple jammers. The subscript eff will be dropped in further

discussion of Cs/N0 to simplify the notation. The GPS carrier tracking loops are able to

maintain a lock, provided that Cs/N0 exceeds a threshold of 28 dB-Hz in a typical receiver.

Satellite coverage is defined as the portion of the sky with elevation angles greater than 5◦
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where Cs/N0 exceeds this threshold,

∫ 85◦

θ=0

∫ 360◦

φ=0 [Cs/N0 > 28] sin θdφdθ∫ 85◦

θ=0

∫ 360◦

φ=0 sin θdφdθ
. (2.34)

The GPS constellation is designed so that multiple SVs will be in view regardless of the

user’s position on Earth, however it is desirable to translate between coverage and a metric

of success. For this, the locations of SVs were estimated for an observer in Amherst, MA at

varying times of day using a freely available online tool [67], and compared against multiple

realizations of null-steering simulations in a jamming environment. A discrete count of

satellites that were recoverable for a given time of day and a given jamming environment was

recorded and a logistic regression between the count and satellite coverage was undertaken.

Figure 2.1 shows the probability that the count is below x ∈ [0, 10] for increasing values

of coverage, with the red regions representing a failure (i.e., fewer than four SVs) and

green representing success. Satellite coverage of 50 % translates to a probability of 0.95 for

successfully tracking four SVs and generating a position solution.

2.4 Propagation Environment

Time harmonic electromagnetic fields are often expressed as phasors, where the rela-

tionship between the time-domain fields and the phasor-domain fields is [68]

EEE(r; t) = Re
[
E(r)ejωt

]
. (2.35)

Here, j is the imaginary unit, ω is the angular frequency, and r is the vector pointing from

the origin to the observation point in space. If the electric field at a particular location has

a magnitude A(r), a phase α(r) and points in the ρ̂ρρ(r) direction, (2.35) takes the form

EEE(r; t) = Re
[
A(r)ρ̂ρρ(r)ejα(r)ejωt

]

= A(r)

(
Re [ρ̂ρρ(r)] cos [ωt+ α(r)]− Im [ρ̂ρρ(r)] sin [ωt+ α(r)]

)
. (2.36)
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In spherical coordinates, r consists of a radial component r, and angles θ ∈ [0, π] measured

from the z axis and φ ∈ [0, 2π] measured from the x axis. An incoming jammer is often

modeled as a plane wave defined by its angle-of-arrival (a term used to denote both the

polar angle, θj, and azimuthal angle, φj) at the observation point r = [x, y, z]T ,

Ej = Aρ̂ρρejk0(x sin θj cosφj+y sin θj sinφj+z cos θj), (2.37)

where k0 = 2π
λ is the wave number in free space. A plane wave has the property that the

electric field observed at all points on a plane normal to the direction of propagation has

the same phase. Polarization, given by ρ̂ρρ, describes the locus of points traced out by the

electric field over time when observed from along the axis of propagation. Polarization is

either linear, circular, or elliptical, and in the last two cases can rotate in a left-handed or

right-handed sense. Linear polarized (LP) waves occur when the electric field points in a

single direction, e.g.,

ρ̂ρρLP = −θ̂θθ. (2.38)

The electric field for circular polarized (CP) waves rotates in the plane normal to the

direction of propagation, and maintains a constant magnitude, e.g.,

ˆρρρCP =
θ̂θθ − jφ̂φφ√

2
(2.39)

is the polarization vector for a right-hand circular-polarized (RHCP) wave traveling in the r̂rr

direction. Elliptical polarized (EP) waves are similar to CP waves, except that the electric

field traces out a locus that is not a circle, due to either non-uniform magnitudes between

θ̂θθ and φ̂φφ components, or a phase not equal to ±j, or both.

Fields radiated by an antenna at sufficiently large distances can be approximated as

plane waves, and the antenna polarization vector is determined by the polarization of these

waves. The received power of an incoming plane wave on an antenna is determined by the

polarization loss, given by the dot product of the polarization vectors, e.g., received power of

an incident field with polarization vector (2.38) impinging on an antenna with polarization

vector (2.39) will be a factor of ‖ρ̂ρρLP · ρ̂ρρCP‖2 = 0.5 lower than the same field impinging on
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an antenna with the same polarization. The received signal, xi on the ith antenna element

is a function of the element reception pattern toward the jammer angle-of-arrival and the

plane wave value at the antenna center coordinates.

A plane wave incident on an antenna centered at the origin from a given angle-of-arrival

will induce a voltage across the antenna terminals. The open circuit voltage for a given

antenna and plane wave is a function of the antenna’s vector effective height, h (θ, φ), which

itself is found from the far-field radiation pattern of the antenna,

h =
4π

jk0η0Iin
Erad , (2.40)

where η0 is the free space impedance, and Iin is the input current to the antenna port

corresponding to Erad. The open circuit voltage, voc, is found by taking the dot product of

the incident field and the vector effective height,

voc = Einc · h . (2.41)

Note that the dot product relates to the polarization vectors of the incident field and the

antenna’s radiated field, i.e. an incident field with orthogonal polarization to the antenna

it illuminates will not induce a voltage on that antenna’s ports.

It is typical to compute h for an antenna centered at the origin, however, a CRPA

comprises multiple elements each with their own phase center. If the antenna is moved

away from the origin to some point given by ri, and assuming the jammer is far away

enough that the plane wave assumption holds, the received voltage will be phase-shifted by

an amount ψ dependent on the position vector of the element and the direction of arrival,

ψ = k · ri = k0 (xi sin θ cosφ+ yi sin θ sinφ+ zi cos θ) . (2.42)

The new vector effective height, h′, for an antenna element at ri and phase referenced to

the coordinate system origin is then,

h′ = h ejψ. (2.43)
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When multiple antenna elements are located closely together in space, the current

distribution on one element can induce a voltage at the ports of the adjacent elements.

This is referred to as mutual coupling and has a greater effect when the antenna elements

are in close proximity. Mutual coupling can be accounted for with the impedance parameter

Z which incorporates each antenna’s self impedance as well as its mutual impedance with

all the other elements [72]. The port voltages due to adjacent currents are given by

v = Zi, (2.44)

where v and i are column vectors with the nth element being the port voltage or current,

respectively, for the nth antenna element. If Z is not explicitly known, it can be found from

the S-parameter [73],

Z =
√
z0 (IN×N + S) (IN×N − S)

√
z0 . (2.45)

The S-parameter relates incident and reflected voltage waves,

v− = Sv+. (2.46)

Now, assuming each element is terminated with a load impedance zL, the coupling matrix

is defined as

A = zLIN×N (zLIN×N + Z)−1 , (2.47)

which translates the open circuit voltage vector into a vector or received load voltages,

vL = Avoc. (2.48)

This is the form of the received signal and jammer vectors, which along with additive white

Gaussian noise, are used in equation (2.1).
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2.5 Jammer Statistics

The received voltage vector, x, is assumed to comprise GPS signals, jammers, and

additive white Gaussian noise,

x =
S∑
p=1

xs,p +
J∑
q=1

xj,q + xN , (2.49)

where the first subscript refers to the type of contribution (signal, jammer or noise) and the

second subscript, if present, is the summation index. GPS signal power is on the order of

-130 dBm, less than the noise power σ2, and so can be safely neglected from the sum. The

covariance matrix R in (2.1) has the form

R = E
[
xx†

]
= E


 J∑
q=1

xj,q + xN

 J∑
q=1

xj,q + xN

†
 . (2.50)

The noise contribution is uncorrelated with all the jammers, i.e.

E
[
xNx†j,q

]
= E

[
xj,qx

†
N

]
= 0 , ∀ q , (2.51)

and the noise components across different ports are uncorrelated with one another,

E
[
xNx†N

]
= σ2IN×N , (2.52)

where IN×N is the identity matrix. The received signals due to the jammers will be functions

of the angles-of-arrival, the antenna element patterns, and possibly a random phase,

xj,q = x̃j,qe
jξq . (2.53)

Assuming independent identically distributed (i.i.d.) random phases, ξq ∼ U [0, 2π], simpli-

fies (2.50) because cross terms between distinct jammers cancel,

E
[
xj,px

†
j,q

]
= x̃j,px̃

†
j,q

∫ 2π

0

∫ 2π

0

ej(ξp−ξq)

4π2
dξpdξq = 0. (2.54)
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This results in a covariance matrix with the form

R =
J∑
p=1

xj,px
†
j,p + σ2IN×N . (2.55)

The covariance matrix here is the sum of J rank-one Hermetian everywhere matrices and

one full-rank Hermetian matrix. If there are fewer jammers than N antenna elements, then

R has J eigenvectors due to the jammers and N − J eigenvectors due to noise. Assuming

the jammer power is larger than σ2, the corresponding eigenvalues are large compared to

the N − J noise eigenvectors, and because R is full-rank Hermetian, its eigenvectors are

orthogonal. This form of covariance matrix is well attested to in the literature and is the

basis of subspace decomposition methods used in direction finding such as multiple signal

classification (MUSIC) [74]. Now minimizing w†Rw is analogous to finding a w that is

orthogonal to the jammer eigenvectors. If J > N , this cannot be done. For this reason, an

N element CRPA is said to have N − 1 degrees of freedom.

If jammer phases are instead assumed to be dependent and fixed, the covariance matrix

is written as

R =
J∑
p=1

xj,p

J∑
q=1

x†j,q + σ2IN×N = x′x′† + σ2IN×N . (2.56)

In this instance, the jammer contribution to R is only a single rank-one Hermetian ma-

trix. This seems to imply that the number of jammers is irrelevant if they are completely

correlated. Of course, this would require coordination and phase locking between multiple

jammers. In practice this seems unlikely, although strongly correlated fields at the CRPA

may not exhaust the degrees of freedom as rapidly as in the independent case. Equations

(2.55) and (2.56) are of interest because in a multipath environment it is possible that a

single jammer may arrive at the CRPA from enough distinct angles to exhaust the degrees

of freedom of a SWAP constrained CRPA, and the correlation between the multipath com-

ponents may predict CRPA performance. Correlated sources have been studied terms of

the direction finding problem, although this is in contrast to the present discussion [38].

Coherence between sources produces challenges to the direction finding problem and re-

duces the ability to accurately predict the directions of arrival, whereas coherence in the
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null-steering problem may enable a CRPA to perform beyond its degrees of freedom.

2.6 Channel Models

The propagation channel is a term used to describe the environment in which electro-

magnetic waves travel in. This can include the effects of reflections from terrain or other

objects as well as atmospheric effects. A wave originating from a single source will travel

through the channel, and the resulting fields measured at the receiver can differ substantially

from that of a simple plane wave in free space. Many physical phenomena can occur in the

channel, including reflection of the waves from smooth surfaces, scattering from rough sur-

faces, diffraction around sharp corners, and diffraction through the intervening objects [75].

Herein, the term scattering will often be used to describe the total effect of the interactions

between electromagnetic waves and objects in the channel.

Applied to the jamming problem, it is convenient to think of plane waves departing

from the jammer in all directions, with varying magnitudes and phases determined by

the jammer’s radiation pattern. These waves will scatter off objects in the channel in

all directions, with some portion of their energy directed towards the CRPA. All of the

waves present at the CRPA will add, sometimes constructively and sometimes destructively,

leading to a total observed electric field. If the channel is non-stationary, i.e. if the jammer,

CRPA, or objects in the channel move relative to one another, then fading occurs at the

CRPA. This is when the total fields at some point add destructively and the power decreases

substantially. Fading is often described as fast-fading due to objects in close proximity to

the receiver, and slow fading due to objects far away [76].

Fading at a single point will not, in general, be statistically correlated to fading of the

fields at any other point. This is of great importance for a CRPA, as the separate CRPA

elements are sampling the fields at different points, and these observation are being added

coherently. To highlight this, consider the case with N = 2 CRPA elements, one of which

is used as a reference. If the output at some time is given by

y = w∗1x1 + w∗2x2 = x1 + w∗2x2, (2.57)
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and the magnitude of x2 suddenly drops by several dB while |x1| remains constant, it is

necessary that |w2| increases rapidly to account for this drop. The response time of the

CRPA will have to be quick enough to account for this change, otherwise high levels of

jammer power will slip through periodically and may disrupt PNT services. Additionally,

the CRPA must be implemented in such a way that the magnitude of the weights has a high

dynamic range, otherwise a deeply faded element will not have much effect on the overall

output while its relative magnitude is small compared to the other elements. A channel in

which fading between different elements is highly correlated will not experience the same

impact from fading. If the relative magnitudes at the different elements remains relatively

constant, the weight vector will remain reasonably stable.

Early channel models include the Rayleigh fading model, in which the channel lacked

a direct line of sight between the transmitter and receiver [51]. Waves are assumed to

come from all directions with equal probability in a Rayleigh channel, and the multiple

uncorrelated paths add incoherently at the receiver. The extension of this model is Ricean

fading, which also includes a line-of-sight component. In a Ricean channel, the power ratio

of the power in the line-of-sight component to the power in the scattered components is set

by the Ricean fading factor, K.

A need for an improved model arose from the empirical observation that scattered waves

were often spatially correlated [9]. Many more recent models are defined in terms of the

dual directional impulse response [8]. This response is the sum of all the contributions from

different paths a wave may take between the transmission point, rtx, and reception point,

rtx,

h(rrx, rtx, τ, t, Φ, Ψ) =
L∑
l=1

hl(rrx, rtx, τ, t, Φ, Ψ). (2.58)

Here Φ and Ψ denote the angle-of-departure from the transmitter and the angle-of-arrival

for the receiver, respectively. The time variable τ refers to the delay along the traveled

path and t is included for non-stationary channels, i.e. channels which have properties that

change over time. This description of h accounts for the spatial channel only, though it can

easily be expanded to include antenna patterns and frequency selective filtering.

For MIMO systems using multiple antennas at both the transmit and receive side, it
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is common to define hi,j for each pair of transmit and receive antennas and organize them

into a channel matrix, H. The channel matrix gives the relationship between an excitation

at one end, s, and the observation, x, at the other,

x = Hs + n, (2.59)

where some additive noise is assumed.

The structure of H can define the channel properties, and much research has been

done in this vein. Many models are commonly referred to as analytical models (as opposed

to physical) which are abstractions of the propagation problem with some broad general

characteristics. The simplest of these would be a channel matrix comprised of i.i.d. Gaussian

random variables,

[HG]i,j = hi,j ∼ N
(
0, σ2

)
. (2.60)

A matrix with this structure produces the familiar Rayleigh fading channel model. Spatial

correlation between elements of the transmit and receive sides can be included into the

channel model as well. One such model is the Kronecker model, which makes use of the

spatial correlation matrices, Rtx and Rrx, to include the array geometry into the channel. It

should be noted that the correlation matrices here differ from the signal covariance matrices

described in other sections; Rtx and Rrx are functions of the array structure at either end

and do not depend on assumed signal characteristics. The Kronecker model further assumes

that the channel covariance matrix is separable and expressible as the Kronecker matrix

product,

RH = Rrx ⊗Rtx, (2.61)

hence its name. By finding any matrices R
1/2
tx,rx satisfying

R
1/2
tx,rxR

1/2
tx,rx = Rtx,rx, (2.62)

the Kronecker channel matrix is given by [31]

HK = R1/2
rx HGR

1/2
tx . (2.63)
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The obvious limitation to this channel model is that it includes structure of the arrays

but none of the structure of the physical channel. To overcome this, the Weichselberger

model was developed [77]. This model makes use of an assumed coupling matrix, Ω, which

gives the average coupled power between transmit and receive elements. This and the

eigendecompositions of the spatial correlation matrices, are used to find the channel matrix

HW = Urx (HG �Ω) Utx, (2.64)

where � is the Schur-Hadamard, or element-wise, product. The interested reader is directed

to [77] for a full treatment of this subject, including variants not addressed here.

The Weichselberger channel model includes characteristics of the antenna elements as

well as the propagation channel, assuming that the eigendecomposition of both transmit

and receive arrays is attainable and the coupling matrix is known. In the absence of this

knowledge assumptions must be made, and the physical realities of a given environment

may not be perfectly modeled. For designed MIMO systems where an engineer has some

control over both the transmit and receive ends1 of the channel, characterization of these

variables may be obtained through measurements of the antenna sites and simulation of

the antennas on either side. However, the current purpose of this work is to characterize

CRPA performance for combat operations. Jammer characteristics are unlikely to be well

documented, and extensive measurement campaigns in contested areas are unlikely. For this

reason, a physical model is preferred over an analytic one for this work, with enough control

for defining the individual scattering objects in the CRPA’s operational environment. This

model is developed in Chapter 4 following development of the antenna modeling methods

and measurements presented in Chapter 3.

1It should be noted that in modern communications systems, the transmit and receive distinction lacks
some meaning as either node will be transmitting and receiving at different times.
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CHAPTER 3

LINE-OF-SIGHT JAMMER MODELING METHODS AND

MEASUREMENTS

The performance of a man-portable CRPA depends on the individual element patterns,

element placements, and interactions between elements. Accurate simulations of CRPA

constructions can be achieved with numerical electromagnetic software, however, these in-

troduce heavy computational demands, and may not be appropriate for studies involving

a large number of CRPA geometries. On-body distributed elements and hand-held units

are of interest for man-portable applications. As such, a large number of constructions is

possible. Additionally, the human body is not rigid and unchanging, unlike a vehicular or

airframe platform. Changes in relative CRPA element orientation and placement are pos-

sible for the man-portable CRPA. Modeling small changes to a given construction requires

efficient methods to consider many randomly perturbed variations of a baseline geometry.

In this chapter, techniques for efficiently simulating CRPA elements and geometries are

developed, and the accuracy of these models is compared with a commercially available

software package. Full-wave methods provide more realistic results than the translational

methods outlined in Section 3.2 due to the inclusion of parasitic effects between elements.

Yet, the computational demands are higher for full-wave solutions, and this constrains

their application to problems involving several variants of similar arrays. The strengths of

each of these methods are highlighted and compared before attention is turned to CRPA

measurements in Section 3.4.

Results in this chapter are for idealized propagation conditions involving plane wave

jammers incident from a single angle-of-arrival for each jammer. Propagation effects are

29



accounted for in later chapters, but the foundational techniques are presented here for a

free-space environment first.

3.1 Analytic CRPA Model

Closed form analytic solutions are possible for some antenna geometries, and this can

be a first step in obtaining CRPA element patterns for a model. As a starting point,

vector effective heights for a dual-linear patch element similar to [16] are found using the

cavity model, details of which are found in Chapter 14 of [71]. The CRPA elements are

all assumed to be square patches with two ports, a horizontal or h-port which induces two

effective magnetic currents oriented in the ŷ direction, and a vertical, or v-port, which

induces currents in the −x̂ direction. With a patch side length of L and width of W , the

radiated fields are of the form

Eh,φ = −φ̂φφ C cos θ sinφ
sin
(

k0W
2 cos θ

)
k0W

2 cos θ

sin
(

k0L
2 sin θ sinφ

)
k0L

2 sin θ sinφ
cos
(

k0Le
2 sin θ cosφ

)
,

Eh,θ = θ̂θθ C cosφ
sin
(

k0W
2 cos θ

)
k0W

2 cos θ

sin
(

k0L
2 sin θ sinφ

)
k0L

2 sin θ sinφ
cos
(

k0Le
2 sin θ cosφ

)
,

Ev,φ = φ̂φφ C cos θ cosφ
sin
(

k0W
2 cos θ

)
k0W

2 cos θ

sin
(

k0L
2 sin θ cosφ

)
k0L

2 sin θ cosφ
cos
(

k0Le
2 sin θ sinφ

)
,

Ev,θ = θ̂θθ C sinφ
sin
(

k0W
2 cos θ

)
k0W

2 cos θ

sin
(

k0L
2 sin θ cosφ

)
k0L

2 sin θ cosφ
cos
(

k0Le
2 sin θ sinφ

)
. (3.1)

The radiated fields from these magnetic currents are used in (2.40) through (2.43), however

mutual coupling is not accounted for at this stage.

The analytic formulation allows for easily modeling of dual-linear CRPAs with differing

patch sizes and spacings by simply changing variables in the calculation. Null-steering is

done for a jamming environment by finding x for a CRPA model and assumed jammer

polarization and angles-of-arrival. Letting Einc
p denote the incident field of the pth jammer,
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Figure 3.1: Patch antenna geometry for the cavity model, with equivalent magnetic current
Ms due to excitation of the h-port.

the open circuit voltage for the nth CRPA port can be found from

[
vocp
]
n

= hhv,ne
jψn ·Einc

p , (3.2)

depending on whether port n is a horizontal or vertical port. A simplifying assumption of

the port impedance and the load impedance may also be made, i.e. letting zin = zL = 50Ω

gives a load voltage vector due to jammer p of

vLp =
vocp
2
. (3.3)

This is the received jammer vector, xj,p, of (2.50). Finding R for the two independent

jammer case and using (2.5),

w =
R−1e

e†R−1e
,

yields null-steering weights which will cancel two jammers. The jammer power after nulling,

Cj , is found from the sum of the weighted jammer vectors,

Cj = w†
(
xj,1x

†
j,1 + xj,2x

†
j,2

)
w, (3.4)
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assuming two independent jammers, and the noise power in a 1 Hz bandwidth after nulling

is

N0 = w†N ′0w. (3.5)

Here, N ′0 denotes the pre-nulling noise power density, which should not be confused with

the noise power, σ2, which is found by integrating N ′0 over the receiver bandwidth. Typical

values of N ′0 = −170.9 dBm and σ2 = −99 dBm are taken from [10].

To see the effect of jamming and null-steering on GPS coverage, the GPS signal power

must also be computed. Let xs (θ, φ) be the received GPS signal for θ ∈ [0, 85◦] and

φ ∈ [0, 360◦]. This can be calculated over the entire range by assuming an RHCP incident

wave present from each angle-of-arrival with an amplitude set so that the minimum power

requirement of -138.5 dBm for C/A code is met. The signal carrier power as a function of

angle-of-arrival may be found from the null-steering weights,

Cs (θ, φ) = w†xs (θ, φ) x†s (θ, φ) w. (3.6)

From here, the effective carrier to noise ratio may be computed over the region of interest,

namely the sky, from (2.33),

Cs/N0 =

[
N0

Cs
+

Cj
CsQRc

]−1

.

Figures 3.2 and 3.3 show coverage maps for two CRPA geometries with four dual-linear

elements. The color denotes Cs/N0 which must exceed a threshold of 28 dB-Hz for xs to

be recoverable. The region θ ∈ [0, 85◦] and φ ∈ [0, 360◦] has been transformed into the u-v

plane, where the transform

u =
√

2 sin θ
2 cosφ,

v =
√

2 sin θ
2 sinφ, (3.7)

is chosen so that the relative areas are preserved and the unit circle is the horizon. Note that

these are not the direction cosines u and v that appear often in the literature and do not
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Figure 3.2: Coverage map (Cs/N0) for analytically modeled CRPA with half wavelength
(d = λ

2 ) spacing.

preserve relative areas. Each CRPA comprises four dual-linear elements in a 2 × 2 planar

grid, with center coordinates of (xc, yc, zc) =
(
±d

2 ,±
d
2 , 0
)

where d is the CRPA spacing.

The dashed line in Figs. 3.2 and 3.3 shows the boundary between the covered regions

where Cs/N0 exceeds the threshold, and outage regions where it does not. The jammer

angles-of-arrival are marked by the black circles. The CRPA dimensions vary in Figs. 3.2

and 3.3 with spacings set to 9.5 cm and 19.0 cm which correspond to one half free-space

wavelength, λ
2 , at L1, and one wavelength, λ, respectively. Coverage is much higher for

d = λ
2 at 85.5% than for d = λ at 52.5%. This is because the larger d brings more of the

CRPA response into the visible region, including areas with lower gain. Two lobes appear

in Fig. 3.2 compared to the roughly six in Fig. 3.3.

This trend continues for other jamming environments with the same two CRPA models.

Tracking coverage over multiple realizations and increasing jammer counts shows that the
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Figure 3.3: Coverage map (Cs/N0) for analytically modeled CRPA with one wavelength
(d = λ) spacing.

smaller CRPA has an advantage over the larger one. Figure 3.4 shows coverage across 1000

realizations of jamming environments with J = 1, 2, · · · , 10 jammers present. The d = λ

CRPA shows worse performance in all cases, as expected. However, as stated before, this

analytic model does not account for mutual coupling, which is more pronounced between

CRPA elements with tighter spacing.

Performance between three different null-steering criteria is shown in Fig. 3.4. These

criterion, taken from [16], are set by three different constraint vectors,

e1 = [1 0 0 0 0 0 0 0]T ,

e2 = [1 0 0 0 0 0 0]T ,

e3 = 1√
2

[1 − j 0 0 0 0 0 0]† . (3.8)
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(b) CRPA spacing d = λ.

Figure 3.4: Coverage for multiple realizations of jamming environments with increasing jam-
mer counts. Statistics for 1000 realizations each for one to ten jammers.
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The first of these represents a single port on a dual-linear patch being used as a reference

elements. The second criterion is a 7× 1 vector, which assumes that the h and v ports on a

single patch are combined with a 90◦ hybrid prior to null steering, effectively using a single

RHCP reference element. The third criterion synthesizes an RHCP element with two ports

on a reference element, though e3 has more degrees of freedom than e2. The differences

between the three constraints can be discerned from either of Figs. 3.4a and 3.4b. The

extra degree of freedom gives e3 an advantage over e2 when the CRPA count increases, and

both of these enjoy an advantage over e1, which has a 3 dB polarization mismatch with the

GPS signal, resulting in lower Cs and therefore, lower coverage.

Jammer polarization also plays a role in CRPA performance when considering dual-

linear elements. The RHCP GPS signals are of interest, and are best captured with RHCP

elements, however LP interference will exhaust the degrees of freedom of a CRPA comprising

only RHCP elements, as the CRPA’s degrees of freedom are entirely in the spatial domain.

An N port dual-linear CRPA has additional degrees of freedom in the polarization domain,

and may cancel up to N − 1 independent jammers. RHCP jammers exhaust the degrees of

freedom more rapidly, and CRPA performance suffers more for the same number of RHCP

jammers as it would for LP jammers.

In some instances, a dual-linear CRPA synthesizing an RHCP reference element can

even maintain full coverage in the presence of one LP jammer, as appears in Fig. 3.5. The

single jammer case for e2 and e3 have some cases with full coverage due to the fact that

the dual-linear elements can cancel out an LP jammer and still receive half the power of

an RHCP GPS signal from the same direction. This means that a visible null will not

necessarily be present in the RHCP reception pattern of the CRPA when using dual-linear

elements. The contrast between RHCP jammers in Fig. 3.4a and LP jammers in Fig. 3.5

is most pronounced for J ≥ 4 jammers, when the degrees of freedom are being strained.

High coverage is still predicted at J = 7 LP jammers for e3, with three quartiles of the

cases resulting in greater than 60% coverage. Recall from Fig. 2.1 that this corresponds

to a 97.5% chance of recovering four or more SVs and a position solution. The analytic

CRPA model shows partial coverage for Fig. 3.4a when 4 ≤ J ≤ 7, however this is overly

optimistic and a result of the model assumptions. The limits of this model will be further
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Figure 3.5: Satellite coverage of an N = 8 port dual-linear CRPA in the presence of LP
jammers.

discussed in Section 3.3.2.

Analytic CRPA modeling is a useful first step, however, more sophisticated models

are necessary for more accurate prediction. Numerical modeling can solve for complicated

geometries which may not have closed form solutions and can be applied to either a single

element or an entire CRPA model. This higher fidelity model requires greater computational

resources, and the variety of CRPA models that can be compared is limited by the time

required to solve for them. Alternatively, other methods can be employed, which can be

used to rapidly model many CRPA geometries with slightly less accuracy. The following

two sections explore both these methods and compare the capabilities of each.

3.2 Euler Rotations and Spatial Translations

The application of transformations, namely rotations and translations, to existing el-

ement patterns allows for changing the CRPA structure easily. Elements can be oriented

and located almost arbitrarily, and models can be generated quickly from a single element

pattern. These methods do neglect the effects of mutual coupling between elements, which
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can be significant at small array spacings, but they offer the advantage of enabling rapid

simulations of a wide variety of CRPA layouts that would be infeasible to model using

higher fidelity numerical methods.

The Euler rotations and spatial translations are applied to existing elements patterns.

These patterns are derived from either analytic models, as in [43], or by simulating a design

in full-wave software for a single element [39]. Further discussion of full wave modeling ap-

pears in Section 3.3. After obtaining the isolated element pattern, the CRPA is constructed

using a two step process: first, each element is oriented as desired using Euler rotations,

then the elements are offset from the global coordinate origin by a spatial translation, i.e.

phase shifting the rotated pattern to its new phase center.

The Euler rotation matrix is the product of three successive rotations; first around the

z-axis by an angle −γ, followed by a rotation about the x-axis by α, and finally around the

z-axis by γ,

REuler (α, γ) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1




1 0 0

0 cosα sinα

0 − sinα cosα




cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 . (3.9)

In this manner, most desired element orientations can be realized in three rotations. To

apply REuler to the CRPA element patterns, first the global CRPA coordinates rG =

[xG, yG, zG, ]
T are defined as points on the unit sphere corresponding to the incident angles

(θG, φG). These are used to find the local element coordinates rL = [xL, yL, zL, ]
T ,

rL = REulerrG. (3.10)

Now the rotated vector effective height for the global incident angles is found from the

vector effective height of the local coordinates,

hR (θG, φG) = h (θL, φL) . (3.11)

Each CRPA element is rotated by the desired rotation angles, γi, αi, before (2.41) is ap-
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Figure 3.6: Coverage maps (Cs/N0), for d = λ spacing with regularly (left) and irregularly
(right) spaced elements subject to three RHCP jammers.

plied. Finally, the element is offset from the global origin by applying a phase shift of

ψ = k (θG, φG) · rc, where rc gives the center coordinates of the antenna element.

The Euler rotation method is useful for generating CRPA models without the same

computational costs as in full-wave modeling, however the S-parameter for an arbitrary

CRPA is not known. This prevents the use of (2.47) and results in a model lacking the effects

of mutual coupling between ports. With the exception of two ports on the same element,

i.e. h and v ports on a dual-linear antenna, mutual coupling is not readily accounted

for. This method suffers some reduction in accuracy but reduces the time necessary for

generation and is appropriate for studying how small changes affect CRPA performance.

Small changes to design parameters can be modeled using rotations and translation, as can

dynamic changes in position for non-rigid CRPAs.

Now that the methodology for these transformations has been established, the next two

sections will highlight applications to which this technique is well suited.

3.2.1 Euler Rotations for Modeling CRPA Geometry

A CRPA with large element spacing exhibits periodicity in the reception pattern. As the

spacing increases, more of the CRPA response is brought into the visible region. When this

pattern has nulls present in jammer angles-of-arrival, periodic nulls reduce satellite coverage

and do not contribute to cancellation of interference. By spacing the CRPA elements
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(a) Outboard CRPA footprint.

(b) Diamond CRPA footprint.

Figure 3.7: Mean coverage for two CRPA models sweeping through rotation angle αi.

irregularly, or aperiodically, this effect can be mitigated. Coverage maps for two CRPAs,

one with regular spacing and the other with the center coordinates randomly shifted in the
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xy-plane, appear in Fig. 3.6. Note that the coverage increases for the irregularly spaced

array as the low gain trenches are broken up.

Euler rotations allow for quickly generating multiple CRPA models with a single variable

being changed, e.g., the rotation angles αi. Two CRPA geometries, denoted “Outboard”

and “Diamond” are shown in Fig. 3.7. The geometries differ in the axis of rotation of the

patch elements, but keep the center-to-center spacing fixed at d = λ
2 . Mean coverage as

a function of αi is plotted for each configuration for J = 1, 2, 3 jammers. In both Figs.

3.7a and 3.7b, all CRPA elements are rotated by the same αi, and the constraint vector

used is e3. A drop in coverage is observed as αi approaches the horizon, due to the region

of interest corresponding to the upper hemisphere, where the GPS SVs will be in view.

However, for both CRPA configurations, an increase in coverage in the presence of multiple

jammers is present for the regions αi ∈ [30◦, 60◦]. The weights for the reference element

are fixed by e, however weights on all other elements vary. Relative weight magnitudes

increase for multiple jammers, corresponding to higher gain, and therefore Cs/N0, in the

region covered by those elements.

The analysis in Fig. 3.7 is enabled by the efficiency the Euler rotation method in

modeling several CRPAs with small changes in geometry. With simple scripting methods,

a variable such as αi can be swept through a variety of values and coverage calculations

can be performed much more rapidly than if full-wave modeling were to be used. This can

be applied to any family of CRPAs that can be parameterized by a few variables to find

optimal values.

3.2.2 Euler Rotations for Array Perturbations

The technique of rotating and translating element patterns is also well suited for study-

ing the effects of relative motion between CRPA elements. The free-space wavelengths at the

GPS L1 and L2 frequencies are 7.5 in and 9.6 in, respectively, and CRPA designs intended

for dismounted soldiers must adhere to practical physical constraints. When considering

a wearable on-body CRPA realization, the amount of space required for antenna elements

renders a rigid construction infeasible. A CRPA comprising distributed elements that are

free to move relative to one-another is far more realistic when considering the necessity of
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dismounted soldiers to move. For such a construction, it is important to evaluate the CRPA

performance. The rotational and translational techniques described above are well suited

to simulating the small perturbations in element center location and orientation expected

while the CRPA is subjected to jostling and other motion.

To investigate the effects of relative CRPA motion, a planar four-element CRPA is

considered for comparison. This geometry is well studied, and performance under dynamic

motion conditions can easily be compared to the static case. The first of these studies

considers only motion in the plane. Each element is allowed to move by a random amount,

∆x,i in the x direction and ∆y,i in the y direction. All amounts are i.i.d. mean-zero random

variables that are limited by some maximum amount, ∆max. Both x and y maximum

distances are taken to be the same. The notation is selected two represent the maximum

relative distance any to elements may move relative to one another in a given direction in

terms of the array spacing, d. Under this naming scheme, a maximum value of ∆max =

d/100 in either x or y is denoted a 2% perturbation.

These spatial perturbations change the CRPA reception pattern when the weights are

held fixed. A CRPA in a stable state, i.e. one that has had sufficient time to converge

to stable weights in a stationary jamming environment, will have a null directed in the

angle-of-arrival of the jammer or jammers present. When the center locations of the CRPA

elements changes rapidly enough that the weights do not have time to update, the reception

pattern changes slightly, and the null is no longer aligned with the jammer. Some jammer

cancellation is still accomplished provided that the reception pattern does not substantially

change due to the jammer still being aligned with a low gain region of the pattern. If the

perturbations are small relative to array spacing, this can be expected.

This is demonstrated in Fig. 3.8, where the stable weights from an unperturbed, or peri-

odic, CRPA are applied to ten different realizations of randomly perturbed CRPAs. Overall

coverage as a function of jammer power is plotted, with the dashed line representing the

unperturbed CRPA, and the solid lines representing the perturbations. Initially, coverage

is high due to jammer power being below the noise floor. As jammer power increases, the

best case periodic CRPA coverage dips below its final value, occurring around -130 dBW.

When the jammer power level is close to the noise power, full cancellation is difficult as the
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Figure 3.8: Coverage vs received jammer power for a ten CRPAs with random 1% spatial
perturbations.

weights must balance between jammer cancellation and increasing noise power. When the

jammer power level is large compared to the noise, a deep null forms. This occurs when the

jammer is approximately 10 dB above the noise power in Fig. 3.8. For the periodic array,

coverage converges to its final value. It should be noted that this model does not address

physical limitations of implementing a CRPA in hardware. Jammer cancellation as power

increases will be limited by the dynamic range of the receiver.

The representative perturbed arrays all show the same dip followed by an increase in

coverage. For the worst case realization, this increase is minuscule and coverage quickly

drops as jammer power increases. The realization with the highest performance shows

high coverage until the received jammer power reaches -80 dBW. The decrease in coverage

corresponds to a fixed level of jammer suppression. CRPA pattern nulls are narrow relative

to the CRPA beamwidth, therefore any misalignment between the null and the jammer

results in a substantial difference in jammer suppression, which in turn leads to lower Cs/N0

and coverage. The effect of perturbations on jammer suppression is demonstrated more

clearly in Fig. 3.9. The jammer power level prior to nulling for a single jammer is recorded
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(a) Jammer suppression for nominal spacing of λ
2

.

(b) Jammer suppression for nominal spacing of λ.

Figure 3.9: Jammer suppression under CRPA perturbations.
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for multiple jamming environments. In each instance, the stable weights are recorded for

the unperturbed or periodic array and applied to multiple realizations of perturbed arrays.

The perturbation amounts range from 1% to 30%, as previously defined. A nominal pre-

nulling jammer power level of -95 dBW is used. Both the half-wavelength spaced array in

Fig. 3.9a and the one-wavelength spaced array in Fig. 3.9b show an immediate decrease in

jammer suppression. At the 1% perturbation level, suppression drops by 35 dB and 40 dB

in each of these, respectively, and at the 5% perturbation level the median output power

level has surpassed the noise power of -129 dBW for either array spacing.

Similar results are obtained for CRPA elements tilting out of the array plane. Defining

the tilt percentage as the maximum tilt angle over 90◦, random realizations of tilted CRPAs

can be applied to jamming environments. In each case, each element rotates in a right-

handed sense about an axis defined by an angle γi ∼ U[0, 2π]. Similarly to the spatial

perturbations, tilted perturbations move the null location away from the jammer direction,

resulting in worse jammer suppression. This results in lower coverage, as seen in Fig. 3.10.

Even just a 1% perturbation in tilt angle, i.e. each element rotating by a maximum of

0.9◦ out of the plane, results in an immediate, albeit modest, decrease in coverage. Median

coverage for both array spacings drops well below the 50% mark for a tilted perturbation

of 5%, i.e. a maximum angle of 4.5◦.

Both spatial perturbations and rotations can be expected for an in-situ distributed

CRPA, and as seen from Figs. 3.9 and 3.10, either of these will have a significant impact on

CRPA performance if the weights are held stable. The question remains as to whether an

adaptive implementation would have the time to react to dynamic non-uniform movement

of CRPA elements.

To address this, two possible velocities were considered to generate an estimate of how

well a CRPA could respond. The first velocity estimate comes from an assumed worst case

scenario. At the time of writing, the world record speed for a heavyweight boxer’s punch is

held by Ricky Hatton [82]. Hatton was able to throw a punch at 14.3 m
s , which is used as an

upper limit to the velocity any two elements of an on-body distributed CRPA. In fact, under

normal operating conditions, it is not suspected that this velocity will ever be reached. A

more representative velocity estimate can be made by considering the requirements for a
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(b) Coverage for spacing of λ.

Figure 3.10: Satellite coverage under CRPA tilted perturbations.

military fitness test used by the United States Marines. The Marine Corps Physical Fitness

Test circa 2010 tested Marines in three areas, including abdominal crunches. In this test, a

Marine could obtain a perfect score by completing 100 abdominal crunches in a two minute
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window. This corresponds to a velocity of slightly less than 1 m
s for the torso relative to the

legs, which remain mostly stationary. This value, one meter per second, is more realistic

than the world record winning velocity of 14 m
s and still exceeds the velocities anticipated

for individual elements in situations where the dismounted soldier would be paying attention

to his GPS receiver.

Table 3.1: Estimated times to reach perturbation percentages [µs].

Amount Perturbed 1% 2% 5% 10%

λ spacing at 14 m
s 66.7 133 333 666

λ
2 spacing at 14 m

s 33.3 66.7 166 333
λ spacing at 1.0 m

s 952 1904 4760 9520
λ
2 spacing at 1.0 m

s 476 952 2380 4760

The approximate travel times for both velocity estimates appear in Table 3.1 . For

either array spacing, this value denotes how much time is necessary for an element to travel

the maximum distance corresponding to the array perturbation percentage, e.g., at 14.3 m
s

an element would take 666.7 µs to travel 10% of the array spacing, or 9.5 cm. The impact

of these movements, with respect to coverage, is dependent on the time needed for weights

to update, therefore a first order approximation of convergence time is needed. This is

accomplished by estimating the number of samples needed for weights to become stable

and making assumptions about the hardware implementation of the CRPA.

To estimate the necessary number of samples, time domain data for jamming envi-

ronments were generated assuming complex sinusoidal representations of the jammer with

magnitudes and phases determined by the CRPA elements’ reception pattern in the assumed

jammer directions,

[x]i = gi (θ, φ)
{

cos [ωt+ ψi (θ, φ)] + j sin [ωt+ ψi (θ, φ)]
}

+
σ√
2

[η(t) + jν(t)] . (3.12)

Here, gi and ψi denote the magnitude and phase of the ith elements reception pattern toward

the jammer, respectively, and η and ν are mean-zero i.i.d. Gaussian random processes with

variance one. The covariance matrix estimate at time t, R̂(t), is found from a Monte

Carlo average, and the weights at time t are calculated using the sample matrix inversion

(SMI) equation, (2.15), with all available samples for t = 0 to the present time. Coverage
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Figure 3.11: Coverage calculated using sample matrix inversion for a Monte Carlo covariance
matrix estimate. One jammer impinging on a 2× 2 dual-linear CRPA.

calculations as a function of time are shown in Fig. 3.11 and compared against the analytic

solution found assuming perfect knowledge of R. For this realization, SMI coverage reaches

1% of the analytic coverage value within 1050 samples. Repeating this experiment with

three jammers increased this number to 1550 samples, as is seen from Fig 3.12.

To convert the number of samples to an estimate of convergence time, assumptions

about the hardware must be made. Searching for commercially available FPGAs at the

time of writing led to a reasonable clock rate estimate of 75 MHz and an update latency of

3 clock cycles. For K samples at this rate, the convergence time is found from

tconvergence = K samples
1

75
× seconds

cycle
× 3

cycles

sample
, (3.13)

which yields 42 µs and 62 µs for the one jammer and three jammer cases, respectively. Com-

paring these values to the perturbation travel times in Table 3.1, only one entry (33.3 µs)

falls below the estimated convergence times. This corresponds to a modest decrease in cov-
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Figure 3.12: Coverage calculated using sample matrix inversion for a Monte Carlo covariance
matrix estimate. Three jammers impinging on a 2× 2 dual-linear CRPA.

erage assuming the highest conceivable element velocities. At the more realistic 1 m
s speed,

all travel times are greater than convergence times. Using reasonable hardware assumptions

and velocity estimates, the problem of relative motions of elements does not appear to have

overly detrimental effects on coverage. Of course, design of the DSP portion of a CRPA

will have to account for the operating conditions and actual hardware used. FPGA clock

rates can be set appropriately given specific algorithm and hardware capabilities.

In Section 3.2, a method for modeling CRPAs of arbitrary geometries has been pre-

sented. The strength of this method is in its adaptability and reduced computational

demands compared to other methods. Comparisons between parametric CRPA designs and

a random perturbation study have been presented to showcase the uses of this method.

In Section 3.3, more accurate full-wave modeling is described, and the two methods are

compared in terms of performance prediction under the satellite coverage metric.
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3.3 Full-Wave Electromagnetic Modeling

Analytic modeling methods for antenna elements depend on simplifying assumptions,

and are more idealized than physically realizable antennas. Alternatively, isolated element

patterns can be obtained through the use of full-wave electromagnetic modeling software to

incorporate material effects. These patterns can be transformed using the Euler rotations

and spatial translations presented above, however, this is still an incomplete method in

the sense that proximity effects between elements and other objects in the environment

are not accounted for. This is true whether the transformations are applied to analytically

modeled element patterns or patterns obtained through full-wave modeling. Incorporation

of mutual coupling between elements and dielectric losses from objects in the environment

can be achieved through full-wave modeling of a complete CRPA, or array environment

model. However, this comes at the cost of increased computational complexity in the form

of higher demands on memory and increased processor time.

The commercially available electromagnetic modeling software, FEKO, is one of many

software suites on the market that can simulate array environment models and deliver

element patterns, mutual impedances, and the effects of near-field scattering objects such

as the human body. FEKO utilizes the Moment of Methods (MOM) to solve for current

distributions over complex structures. This is accomplished by solving an N × N matrix

equation which solves the boundary conditions in an average sense over the surface [71].

Here, N is the number of polygons used to approximate the surface of the antenna structure.

The result is a computationally intensive, accurate solution to the radiated fields by the

antenna.

The radiated patterns for the CRPA ports are computed by exciting each port individ-

ually in a separate simulation. The result of each simulation is the radiated fields Erad for

use in Eqs. (2.40) and (2.41). All patterns are phase referenced to the origin, not their own

phase center, therefore (2.42) is not necessary.

This gives the open circuit voltage for each port under the assumption that all other

ports are left open. To obtain the patterns with the ports terminated, the coupling matrix

A, for a given loading condition must be calculated. This is accomplished by first computing
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Figure 3.13: Error vs increasing memory requirements for two patch widths W = 1.27 mm
and W = 12.70 mm. Memory requirements increase for finer mesh sizes.

S in FEKO, and choosing a load impedance for use in (2.47). Matched loads, where zL = z∗in

eliminate reflection between antenna ports and their terminations, and deliver the maximum

power for the load, and so a load equal to the complex conjugate of the average antenna

impedance is chosen. It is also possible to replace zLIN×N with a diagonal matrix with

each element zL,i = zin,i, however the CRPAs modeled here had little variation in input

impedance making this unnecessary.

The array environment simulation in FEKO meshes the surface of the CRPA geometry

into multiple triangles, and computes a MOM matrix that grows quadratically with the

number of triangles. Finer mesh sizes increase the accuracy to a point, however the solution

eventually converges. Median error, ε, as a function of mesh size is plotted in Fig. 3.13 for

two isolated element patch antennas. Here, error is defined as the norm of the difference

in the electric fields of the two simulations over the maximum norm of the electric field for

the finer simulation,

ε =
‖Ea −E90‖2
max
θ,φ
‖E90‖2

, (3.14)

where the subscript a corresponds to the numerator of the mesh length λ
a , i.e. the maximum

length of the side of a mesh triangle, which ranges from λ
10 to λ

90 . Note that the thinner
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patch has higher error for the same mesh size. This necessitates very fine mesh sizes for

simulation of textile antenna elements and increases the computational demand for the

CRPA model. The element modeled for this comparison is relatively small compared to a

2 × 2 planar CRPA with no additional objects in the environment, and already 1 GB of

memory is required to reduce the median error below 30 dB. This limits the size of the

full-wave model depending on the machine running the simulation.

3.3.1 Full-Wave Weighting and Verification

In order to thoroughly confirm the methods described above and build confidence in the

model, a method for applying null-steering weights calculated in MATLAB to the full-wave

CRPA model is laid out here. Electromagnetic waves radiate due to the acceleration of

electrons, i.e. time varying currents. As such, a radiating FEKO model which incorporates

the complex valued weights must be excited by current sources, however, the full-wave

model of the planar dual-linear CRPA considered in Section 3.1 is generated using FEKO’s

MOM solver. This is appropriate for planar structures, although FEKO does not support

current excitations for MOM structures. To use a current source, a finite element method

(FEM) model must be constructed. Though FEM has advantages for arbitrary volumes,

the planar structure of this CRPA is best modeled with MOM, and the results from the two

models may vary. Using a model solved by FEM to verify an existing model using MOM

does not make sense and invites differences and errors to creep in. Rather, the existing

model must be modified in such a way as to verify the CRPA perfomance.

Exciting the array with complex valued voltage sources will not ensure the desired

weights are applied to each CRPA element, as mutual coupling between ports will change the

current distribution on each element. In order to apply the weights without distortion, the

original radiating model is modified to a receiving configuration. The CRPA is excited with

plane waves from multiple directions, and the received signals on each port are combined

using a non-radiating network. This network is defined in terms of its S-parameter, with

the desired effect that the received signals on each of the eight CRPA ports are combined on

a ninth port, which is terminated by a 50 Ω load. The S-parameter defines the relationship
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between incident and reflected voltage waves on a multiport network,

v− = Sv+, (3.15)

where v− is the reflected component and v+ is the incident wave. The desired network must

not induce any reflections on the eight CRPA ports, i.e. [S]i,j = 0 for i, j = 1, 2, ..., 8. Also,

the network must perform the linear combination of the eight antenna ports and supply the

result to the ninth port, i.e. [v−]9 =
∑8

i=1 [w]∗j [v+]j . Therefore, S is defined as

S



0 0 · · · 0 w∗1

0 0 · · · 0 w∗2
...

...
. . .

...
...

0 0 · · · 0 w∗8

w∗1 w∗2 · · · w∗8 0


. (3.16)

Note that S is reciprocal, though this is not strictly necessary. A non-radiating network

in FEKO with this form will behave as intended if no reflections are present, however, the

matrix elements [S]i,j are defined under the assumption that all ports are matched. If the

antenna ports vary from 50 Ω by any amount, errors are introduced. To eliminate these

errors, S must be renormalized in terms of the actual port impedances of the modeled

CRPA [73]. These impedances are the diagonal elements of the Z-parameter, and are found

from the CRPA S-parameter solved with the FEKO model and (2.45). Let Zn denote the

port impedance for the nth CRPA element, Ẑn be the port impedance for the nth network

port, and the diagonal matrices B and C be defined as

Bn =
1

Ẑn + Zn

√
Ẑn
Zn

, (3.17)

Cn =
Ẑn − Zn
Ẑn + Zn

. (3.18)
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Figure 3.14: Comparison of received GPS power, Cs, between MATLAB null-steering suite
prediction and FEKO non-radiating power combiner network.

Now the renormalized S-parameter, Ŝ, is given by,

Ŝ = B−1 (S−C) (I−CS)−1 B. (3.19)

Using the eight-port dual-linear planar CRPA, weights are derived for a jamming en-

vironment with a single RHCP jammer located at (θj , φj) = (30◦, 45◦) and used to form Ŝ

for a non-radiating network in FEKO. The CRPA model is connected to the network and

excited by RHCP plane waves arriving in 1◦ increments along θ, and the received pattern

of the CRPA through Ŝ is recorded. Figure 3.14 shows this reception pattern along with

the predicted pattern from the MATLAB null-steering suite. The two patterns are nearly

identical, save an assumed receiver loss of 2 dB which was incorporated into the MATLAB

model, but neglected in FEKO. This confirms the integration of full-wave patterns into the

CRPA model as described above.
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Figure 3.15: In-situ head mounted CRPA with simplified human head phantom.

3.3.2 Modeling Method Comparison

To demonstrate the limitations of analytic pattern modeling and pattern transforma-

tions described above, a comparison with the full-wave array environment CRPA model was

carried out [39]. A CRPA with the same diamond footprint as in Fig. 3.7b was modeled

using both the Euler rotations and the full-wave array environment methods. The full-wave

model also included a dielectric sphere with properties matching human brain matter, in-

tended as a crude model of the head for a helmet mounted CRPA1. Both CRPA models were

subjected to the same jamming environments (1000 realizations each with J = 1, 2 · · · , 8

randomly placed RHCP jammers) and coverage was logged for each. The Free-Space CRPA

referred to in Fig. 3.16 is modeled using the Euler transformation method of Section 3.2,

whereas the In-Situ CRPA refers to the full-wave CRPA model. Each CRPA comprises four

dual-linear elements for N = 8 ports. For 1 ≤ J ≤ 3 jammers, the full-wave CRPA actually

performs better. This is due to the dielectric sphere acting somewhat like a ground plane

and making the CRPA element patterns more directive. The degrees of freedom for each

CRPA are expected to be exhausted by J = 4 RHCP jammers, as can be seen by the sharp

drop in coverage, however the free-space CRPA model continues to predict median cover-

1It should be noted that a helmet mounted design is impractical for safety concerns.
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Figure 3.16: Satellite coverage across multiple realizations with mutual coupling and dielec-
tric losses (in-situ) and without (free-space).

age values about 30% higher than the more realistic CRPA model. This overly optimistic

prediction ignores the realities of a physically realizable CRPA. Mutual coupling between

ports diminishes performance here as there is an additional correlated component between

the CRPA elements. Additionally, the dielectric sphere acts as an obstruction and reduces

the gain in the overlapping region.

Full-wave modeling offers more realistic pattern modeling and incorporates proximity

effects neglected by other methods described in this chapter. Additionally, the methodology

has been verified in and high confidence can be placed in results obtained through these

methods. Simpler CRPA models (in terms of computational efficiency) are a good alter-

native when multpile geometries must be modeled and compared, but, as seen from Fig.

3.16, predictions made with these simplifying assumptions can be overly optimistic. When

considering a large design space, Euler rotations and spatial translations are best used as a

starting point, with a final design being verified with more realistic modeling methods.
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3.4 Anechoic Chamber Measurements

Antenna measurements in the anechoic chamber approach the idealized free-space mod-

els by minimizing exterior interference and interior reflections. This environment is well

suited to achieving null-synthesis in hardware, a necessary step for confirming the theory.

To achieve a successful CRPA implementation, methods for acquiring data and measuring

patterns must be developed.

To acquire the data for null-synthesis, two methods may be employed. The first is

to simply measure the CRPA element patterns, and generate a received vector xj from

sampling multiple antenna patterns at a given direction. First the CRPA must be mounted

in the anechoic chamber on the mast, and then each element must be measured one at a

time, with all others terminated in 50 Ω loads. An RHCP transmit antenna at the apex is

ideal, if RHCP reception patterns and jammers are desired, however, a single LP antenna

may be used in lieu of an RHCP antenna. For synthesizing the RHCP reception pattern of a

CRPA element with a standard gain horn, two measurements are necessary. The horn must

be rotated 90◦, resulting in two measurements Fh and Fv, which are then added together

in post processing to generate

Fr =
Fh√

2
− j Fv√

2
. (3.20)

Figure 3.17 shows the magnitude and phase of such a measurement for the V port of a dual

linear element. The same element was also measured using a RHCP transmit antenna at

30◦ increments, and the two measurements show good agreement.

From here, the received vector xj is taken to be a combination of Fr,n(θ, φ) for each

of the N CRPA elements at the desired angle-of-arrival. The covariance matrix is formed

by assuming some noise power, although the F measurements should be reasonably free of

noise, and calculating w from the matrix inversion equation (2.5),

w =
R−1e

e†R−1e
.

Without the assumed noise, R is a singular matrix, however, if the noise power is too

large compared to the implicit jammer power the optimal weights will not produce a deep
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Figure 3.17: Antenna element RHCP reception pattern measurement synthesized from two
LP antenna measurements. The points correspond to measurements of the
same antenna element using a RHCP transmit antenna.

null [42]. A jammer to noise ratio of around 20 dB will accomplish the desired results.

The second method that may be employed is to acquire time-domain samples using

a data acquisition tool. One such tool which requires minimal setup is a digital storage

oscilloscope, such as the Keysight DSO 91240. The DSO can sample four channels simul-

taneously and transfer the data over Ethernet to a PC for post processing. This allows for

use in the iterative algorithm, (2.28),

wk+1 = e + P [wk − µxky
∗
k] .

An added benefit is that connections to CRPA ports need not be changed between measure-

ments, however, this does not allow for the synthesis of an RHCP jammer if the transmit

antenna is LP.

Hardware that applies the weights to the individual CRPA elements is needed for mea-

surement of a synthesized null. For this purpose, the beamforming network in Fig. 3.18

was fabricated [42]. The beamforming network comprises four identical channels, each of

which connect to a CRPA element. On each channel, the first device after the antenna is a

low noise amplifier (LNA), followed by a power splitter. Half the power is sent to an SMA

connector on the bottom of the PCB, for interfacing with the DSO. The remaining half of

the power exiting the LNA is fed into an eight-bit variable phase shifter, PE 44820, which

applies the desired phase with 1.4◦ resolution. Following this is another LNA for increased

isolation and additional gain, followed by a SKY12343-364LF variable attenuator, with 0-
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Figure 3.18: Beamforming receiver for GPS denied environment.

31.75 dB attenuation in 0.25 dB steps. Finally, all four channels are combined and output

through an SMA connector for measurement.

Two commercial off-the-shelf dual linear antennas were placed on a 12 in ground plane

with 4 in spacing, and connected to the beamforming network. Weights were calculated

using the same constraint vectors, e1 and e3, introduced in Section 3.1. Recall that e1

implements a single LP port as a reference element, whereas e3 synthesizes an RHCP

element from both ports on one antenna. Selected measurements are shown in Fig. 3.19

for e3 and patterns for e1 appear in Fig. 3.20. Measured results agreed with simulated

results first reported in [16] and confirmed in [43], i.e. that better cancellation was achieved

for the synthesized CP reference element than for the LP reference. Additionally, the CRPA

reception pattern saw higher gain away from the jammer, partially due to the application

of the weights. Despite the constraint vectors both being normalized vectors, it was decided

that attenuating the ports on the reference channel would lessen the dynamic range of the

measurement, and so a modified constraint vector, e3 = [1 − j 0 0]† was used in practice.

This adds an additional 3 dB of gain to the active reception patterns in Fig. 3.19.

The receiver uses discrete state phase shifters and attenuators to apply the relative

magnitude and phase weights, introducing errors compared to the double-precision floating

point weights applied in simulation. The phase shifters also introduce a phase change that

is not uniform across states, or even across devices. This must be corrected by the use
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(d) Synthesized CP reference, jammer at 45◦

Figure 3.19: Measured reception patterns using beamforming receiver and synthesized CP
reference element.
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(d) LP reference, jammer at 45◦

Figure 3.20: Measured reception patterns using beamforming receiver and linearly polarized
reference element.
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of a lookup table (LUT). Small errors in measurement as well as finite precision result

in the null locations not always aligning with the jammer angle-of-arrival for all cases,

e.g., Fig. 3.19d. In the absence of the large discretization errors present in hardware,

the iterative algorithm applied in post-processing is able to reduce jammer power below the

noise floor for a variety of jamming environments, achieving better jammer suppression than

the hardware realization [40]. Additionally, in a fully realized CRPA design, each port must

be sampled so that processing can be done on an embedded computer. For this reason,

a digital implementation is preferred to an implementation using variable phase shifters

and attenuators. The beamforming receiver in Fig. 3.18 is a useful piece of laboratory

equipment, but is still far from a complete system ready to be fielded.

3.5 Discussion

Design of a CRPA must pass through several stages. One must walk before one can

run, so to speak. Modeling the CRPA in software is a first step and can identify trends

and candidate designs for further development. At this stage there are numerous tools at

the disposal of a designer, ranging from idealized analytic models to commercially available

numerical tools. Varying levels of model sophistication can produce varying degrees of

accuracy in the model, though there are costs incurred with these higher fidelity models.

Depending on the computational resources available, these costs may be may be a limiting

factor.

Different techniques have different strengths, and having multiple tools in one’s toolbox

provides adaptability to the demands of a given goal. The Euler rotation technique is well

suited to studies involving minor variations to design parameters or perturbations to an

existing CRPA layout. For each of these investigations, the large number of variations on

the CRPA design that must be modeled makes it impractical to use more sophisticated

methods, such as MOM solvers. However, predictions made with the Euler rotation models

must interpreted carefully, as mutual coupling effects present in the full-wave models have

a large impact on overall performance.

Ultimately, measurements provide the most confidence in a design, as numerical models
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will never capture the complexity of the real world. In a controlled environment, such as

an anechoic chamber, it is possible to achieve decent cancellation of jammers even with a

small number of elements. The laboratory equipment used to obtain these measurements

is still far from a complete end-to-end system, and the environment is static and idealized

in a way that a theater of combat will not be. In the following chapters, an attempt to

model channel effects and multipath is presented, and the effects on CRPA performance is

documented.
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CHAPTER 4

MULTIPATH JAMMER MODELS

The modeling methods and measurements of Chapter 3 are all idealized in one common

way; none of them account for realistic propagation effects. The element patterns are

simulated in free space, and the measurements are done in an anechoic chamber, a room

specifically designed to remove environmental effects. An end to end CRPA deployed in the

field will not operate under such idealized conditions. Propagation effects and dynamically

changing environments will produce an electromagnetic environment quite different from

what has thus far been simulated.

Of chief concern is how well a man-portable CRPA, limited in degrees of freedom,

can effectively cancel out interference due to multipath components of hostile jammers.

Statistically independent jammers exhaust a degree of freedom for each jammer present,

therefore two paths that a jammer takes to reach the receiver could potentially require a

degree of freedom each, provided that these two components are statistically independent

and sufficient power from the jammer arrives at the CRPA from each path. However,

several multipath propagation models present in the literature are divorced from the specific

geometric properties of a given environment, therefore there is a need for physical models

tailored to the operating conditions the CRPA being modeled.

In this chapter, a scattering model specific to a GPS jamming environment is presented.

First, two extreme forms of scattering, independent and fully correlated, are explored, and

the conditions under which a CRPA will successfully mitigate interference identified. This is

followed by the development of a mixed scattering model which combines aspects of specular

and diffuse reflection. Finally, the jamming problem in the time domain is considered to

66



highlight the physical conditions which give rise to statistical dependence or independence.

A man-portable CRPA will undoubtedly experience dynamically changing propagation

effects as the user moves through their environment. This application calls for models that

can adapt to changing conditions as well as the CRPA and the soldier who carries it must

be able to.

4.1 Generalized Scattering

The line-of-sight simulations and measurements presented in Chapter 3 do not take the

effects of other objects into account. A CRPA operating in-situ will not be surrounded

by electromagnetic absorber, as in the anechoic chamber, but rather will be located near

reflective objects, or scatterers. Similarly, waves launched by the jammer may be scattered

by objects local to the jammer as well as by distant objects. The multiple paths taken to the

CRPA present a challenge to the null-steering problem in that the total interference from

all paths must be canceled, and multipath components exhibiting statistical independence

require additional degrees of freedom even when originating from a single jammer. It is

possible for a single jammer to exhaust the CRPA degrees of freedom, provided that the

multipath components are statistically independent.

The simplest multipath case that can be studied comprises a single jammer and a single

scattering object. At the CRPA, two incident fields will be present: the line-of-sight field

and the scattered field. Defining the global coordinate system in terms of the CRPA phase

center, the position vector from the origin to the ith CRPA element is roi = [xi, yi, zi]
T .

The position vector roj denotes the location of the jammer, and ros is the position vector

of the scatterer. Let the jammer’s local coordinate system be defined by the unit vectors

(x′,y′, z′). The position vector originating at the jammer and ending at the CRPA origin,

rjo = −roj , can be expressed in the jammer-centric coordinates by applying the transform

r̃ =


x′1 x′2 x′3

y′1 y′2 y′3

z′1 z′2 z′3

 r. (4.1)
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The angles of incidence (θoj , φoj) for the CRPA and angles of departure for the jammer are

found using

θoj = arccos
zoj√

x2
oj + y2

oj + z2
oj

, (4.2)

φoj = arctan
yoj
xoj

, (4.3)

for either coordinate system. Similarly, the vector rjs = ros− roj can be expressed in either

coordinate system, as can the angles between the scatterer and either the CRPA or the

jammer.

The jammer radiation pattern will determine the line-of-sight fields present at the CRPA

origin and at the scatterer, i.e.

EL(O) = ẼL(r̃jo) =
e−jkRjo

Rjo

[
θθθ′Eθ

(
θ̃jo, φ̃jo

)
+φφφ′Eφ

(
θ̃jo, φ̃jo

)]
, (4.4)

ES(ros) = ẼS(r̃js) =
e−jkRjs

Rjs

[
θθθ′Eθ

(
θ̃js, φ̃js

)
+φφφ′Eφ

(
θ̃js, φ̃js

)]
. (4.5)

The fields at the scatterer will be reflected towards the CRPA origin, with some reflection

coefficient. To account for the mixing of polarizations the reflection coefficient matrix is

defined as

Γ =

Γθ,θ′ Γθ,φ′

Γφ,θ′ Γφ,φ′

 , (4.6)

where Γθ,θ′ denotes the reflection coefficient for the θθθ′ component of the incident wave

in jammer-local coordinates to the θθθ component of the reflected wave in CRPA-centric

coordinates, and so on [86]. Now the scattered fields at the CRPA origin are given by

ES (O) =
e−jkRos

Ros
ΓES (ros) . (4.7)

The open circuit voltage at the CRPA element ports are found from the vector effective

heights,

[voc]i = hi (θoj , φoj) ·EL (O) + hi (θos, φos) ·ES (O) . (4.8)

This formulation can be extended to multiple scatterers by simply adding more terms,

68



though when considering multiple scatterers it is possible to have paths with more than one

reflection. In the following, only paths with a single reflection are considered.

4.2 Fully Correlated Scattering

In order to examine the impact that statistical dependence plays in the null-steering

problem, a simple case of the above generalized case is now developed. Let the jammer and

the CRPA elements all have the radiation patterns of vertically oriented half-wavelength

dipoles, there be exactly one scatterer, and let Γ from (4.6) will take the form

Γ =

1 0

0 0

 . (4.9)

Here, it is assumed that the incident fields from the jammer are fully reflected by the

scatterer and that the polarization of the reflected component is unchanged and matches

that of the CRPA.

The input vector at the receiver is a sum of thermal noise, xN , the voltage induced

by the line-of-sight jammer, xj , and the voltage induced by the scattered fields, xs. To

examine the extreme cases of independent and fully correlated scattering, the covariance

matrix must be examined,

R = E
[
(xN + xj + xs) (xN + xj + xs)

†
]

= σ2I + E
[
(xj + xs) (xj + xs)

†
]
. (4.10)

The thermal noise is assumed to be Gaussian and can be separated from the other terms

in the expectation. The remaining term on the right-hand side comprising the line-of-sight

and scattered interference is referred to as the partial covariance matrix, R. Expanding out

R gives

R = E
[
xjx

†
j + xsx

†
s + xjx

†
s + xsx

†
j

]
. (4.11)

Under the independence assumption, xj and xs are uncorrelated, and so the expectation

of the cross-terms, xjxs and xsxj , are both 000. The only contributions to the covariance
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Figure 4.1: Plane wave reception patterns for dependent and independent formulations with
M = 1 scatterers.

matrix come from the like-terms, xjx
†
j and xsx

†
s. However, if it is assumed the two paths

are fully correlated, i.e. the two components add coherently at the receiver with a phase

difference due only to the path lengths and the deterministic reflection coefficient, then all

four terms contribute to R.

The independent partial covariance matrix,

RI = xjx
†
j + xsx

†
s, (4.12)

is a rank two matrix. If the number of scatterers increases to M > 1, then RI becomes a

rank M + 1 matrix unless the number of scatterers meets or exceeds the number of CRPA

elements, N ≥M , in which case RI is full-rank. However, the dependent partial covariance
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Figure 4.2: Plane wave reception patterns for dependent and independent formulations with
M = 10 scatterers. The CRPA degrees are overwhelmed under the independence
assumption.

matrix,

RD =
(
xj + xs

)(
xj + xs

)†
= xjx

†
j + xsx

†
s + xjx

†
s + xsx

†
j , (4.13)

is a rank one matrix, because each row is a scalar multiple of the vector xj + xs. This

is true for M ≥ 1 scatterers, in fact any number of incident fields adding coherently in

this manner present effectively one “jammer” to the CRPA. Although, it should be noted

that this effective jammer will not have the same form as a plane wave from any particular

direction, and one should not anticipate a distinct radiation pattern null associated with it.

Figure 4.1 shows the normalized reception patterns for a four element planar array

with weights calculated from both independent and dependent formulations of R. The

independent case has two distinct nulls, one in the DOA of the jammer and the other in the

angle-of-arrival of the scatterer, whereas the dependent case does not show any nulls at all.
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However, when examining the output power, w†Rw, in each case, the output is reduced to

the noise floor with the independent and dependent cases yielding output powers of 2.9 and

0.5 dB relative to the noise power, respectively. These values are equal to the norm squared

of the respective weight vectors, ‖wI‖2 and ‖wD‖2. In each of these cases the interference

from both paths taken by the jammer is eliminated.

Each of the formulations, independent and dependent, have been shown to successfully

mitigate a jammer and a single reflection, however the difference between these formula-

tions becomes more apparent when considering multiple scatterers. Figure 4.2 shows the

normalized plane wave reception patterns for M = 10 scatterers. Here the independent

weights result in a pattern which steers nulls towards some of the incident fields, but the

CRPA lacks the degrees of freedom to effectively cancel all of the interference. The de-

pendent weights do exhibit one feature resembling a null, howeverthis feature seems to be

merely coincidental and the overall pattern does not have much directional variation. The

differences between the two cases are more apparent when examining the output power.

Once again the output power for the dependent case, w†DRDwD, is 2.0 dB greater than

the noise power, a factor equal to ‖wD‖2. However for the independent case w†IRIwI is

61.6 dB relative to the noise power. The independent formulation fails to cancel the inter-

ference, as is expected considering the degrees of freedom available. Each of the paths taken

produces an independent field at the CRPA, and each field requires a degree of freedom to

be canceled out. The fully correlated formulation, however, is able to cancel the coherent

field at the CRPA with only a single degree of freedom. For a CRPA operating in a purely

deterministic, fully-correlated scattering environment, it is always possible to find a set of

weights which fully cancels the interference.

A more detailed investigation into the CRPA output power and the eigenvalues of

R is instructive in this matter. The output noise power, i.e. the portion of the output

attributable to the thermal noise only, increases with the norm of the weight vector,

Pn = w†E
[
xNx†N

]
w = σ2‖w‖2 . (4.14)

Some noise will pass through the system, and weighting does increase the output noise

72



0 200 400 600 800 1000
-100

-50

0

50

100

(a) Output power, independent formulation, M = 1 Scatterer.
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(b) Output power, dependent formulation, M = 1 Scatterer.

Figure 4.3: Relative power levels for independent and dependent formulations.
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(a) Output power, independent formulation, M = 10 Scatterers.
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(b) Output power, dependent formulation, M = 10 Scatterers.

Figure 4.4: Relative power levels for independent and dependent formulations.
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power, though the noise is incoherent and adds in power rather than in amplitude. For the

weights to be effective in the independent case, the independent output powers,

Pj,s = w†xj,sx
†
j,sw , (4.15)

must both be reduced to the noise floor or below. Note that for either the line-of-sight

or the scattered components (4.15) is non-negative definite. Conversely for the dependent

formulation, it is not necessary that (4.15) be below the noise floor because the two cross-

terms in (4.13),

w†xs,jx
†
j,sw , (4.16)

are present in the sum. Note that the two cross-terms are complex conjugates and their

sum will be strictly real, though not necessarily positive. If the sum of the cross-terms is

equal in magnitude to the sum of the co-terms, but with an opposite sign, the total output

will be zero.

For multiple realizations, the individual power terms were recorded and compared to the

overall output power. These powers relative to the noise are shown in Fig. 4.3. The output

power in both cases is slightly higher than the noise power, as is expected from (4.14).

However, the independent formulation produces a weight vector which cancels both the

line-of-sight and the scattered interference individually, whereas the dependent formulation

produces weights which do not. The red trace in 4.3b shows the power in the individual

terms to be far greater than the noise power, though the coherent sum of all four terms

produces an overall output power similar to the independent case. In each instance, the

CRPA is capable of eliminating the interference.

Increasing the number of scatterers to M = 10 overwhelms the CRPA in the indepen-

dent case but not in the dependent case as can be seen in Fig. 4.4. Similar to what was

seen in the single realization depicted in Fig. 4.2, across multiple realizations the inde-

pendent scattering environment produces too many independent fields at the CRPA to be

canceled. Independent components exceeding the degrees of freedom overwhelm the CRPA

and interrupt GPS service.
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Figure 4.5: Real part of the co-terms and cross-terms.

However, the output power under the dependent formulation, shown as the blue trace

in Fig. 4.4b is equal to the noise power scaled by the norm of the null-steering weights. The

conditions described above, whereby the cross-terms and co-terms cancel one another out,

are demonstrated in Fig. 4.5, in which the first 50 realizations are highlighted for clarity.

The cross-terms are equal and opposite to the co-terms, and their sum is zero to working

numerical precision. This indicates complete cancellation of the jammer and any number

of multipath components provided they are fully correlated.

Closer inspection of the matrix inversion equation, (2.5), shows how this is accom-

plished. The denominator, e†R−1e, is the Lagrange multiplier, and may be ignored for the

present discussion. Considering only the numerator, R−1e, offers a geometric interpreta-

tion. The constraint vector is transformed by the inverse covariance matrix to generate the

weight vector, and so the structure of R and R−1 is illuminating. If the interference power

at the receiver is large relative to the noise power, the eigenvalues of RI are large relative

to the eigenvalues of the noise contribution, σ2. Given that R is a hermetian matrix, it

shares its eigenvectors with its inverse, and eigenvalues associated with the same eigenvetor

76



are reciprocal to one another. This means that w is found by compressing the portions of e

in the directions corresponding to the interference eigenvectors. The desired weight vector

is then nearly perpendicular to the eigenvectors associated with the interference. However,

when M ≥ N , the interference eigenvectors span the entire space, and it is impossible cancel

each of the independent paths simultaneously. This is one interpretation of what is meant

by exhausting the CRPA degrees of freedom.

For the dependent case, RD is always rank one, so this condition is never met. In the

N -dimensional signal space, there is only one eigenvector associated with the jammer, as

all paths are linearly dependent.

To demonstrate this, multiple realizations were simulated in MATLAB with a single

jammer and either M = 1 or M = 10 scatterers placed randomly within a 1 km radius

of the receiver. In each case, independent and dependent formulations of R were made,

and the eigenvalues of each were recorded. The results are shown in Fig. 4.6. The single

scatterer case is shown in Fig. 4.6a and 4.6b. The dependent formulation clearly has

only one major eigenvalue, i.e. one eigenvalue that is much larger in magnitude than

the smallest eigenvalue. Conversely, the independent formulation shows that RI has two

major eigenvalues. When M is increased to 10 scatterers, the number of major eigenvalues

remains unchanged at one for RD, however the independent formulation shows that all

the eigenvalues are large relative to the noise power, and RI is full rank. As can be seen,

the number of eigenvalues large relative to noise power is directly related to the number

of scatterers in the independent formulation. However, the number of major eigenvalues is

invariant with respect to the number of scatterers for the dependent formulation, where the

minor eigenvalues are effectively zero.

Here it has been shown that statistical dependence plays a large role in the operation

of a CRPA in a multipath environment. At one extreme, the multiple components can be

modeled as independent form the line-of-sight component as well as from one another. If

enough components are present, and the power in each is large relative to the noise, the

CRPA will be overwhelmed and no null-steering solution is possible. At the other extreme, if

all paths add coherently, there is effectively on one jammer present at the receiver, and only

one degree of freedom is required to fully cancel it. In a realistic environment, it is likely
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(a) Eigenvalues of RI , M = 1 Scatterer.
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(b) Eigenvalues of RD, M = 1 Scatterer.
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(c) Eigenvalues of RI , M = 10 Scatterers.
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(d) Eigenvalues of RD, M = 10 Scatterers.

Figure 4.6: Eigenvalues of the partial covariance matrix under fully independent and fully
dependent assumptions.
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Figure 4.7: Eigenvalues of RM for varying values of Γmd and Γms.
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that neither of these conditions will be met, and a more general scattering environment

model is needed.

4.3 Mixed Scattering

If the reflection coefficient of a scatterer is modeled to behave randomly, it is possi-

ble to formulate the covariance matrix as neither altogether independent nor completely

dependent. Physical scattering environments encountered in practice are not likely to fall

into either of these two extremes, therefore a middle ground formulation becomes necessary

for predicting CRPA performance in physical environments. What follows is a parametric

approach to modeling scattering as a combination of diffuse and specular, or statistically

independent and dependent, reflection.

Consider a reflection coefficient which comprises both specular and diffuse reflection.

The specular reflection is deterministic resulting in variations that depend only on the

geometry of a given jamming environment. The diffuse reflection has a random phase,

ξ ∼ U [0, 2π], which will give rise to a scattered field that is statistically independent from

the line-of-sight jammer. Let the specular and diffuse reflection coefficients be limited by

some maximum values, Γms and Γmd, respectively, and the proportion of specular to diffuse

reflection be controlled by a variable 0 ≤ ς ≤ 1, henceforth called the specular reflection

factor. Now, Γ is written as

Γ = ςΓms + (1− ς) Γmde
jξ. (4.17)

Let xs = Γx̃s be the scattered jammer at the CRPA, with x̃s is completely deterministic

and dependent on path loss, phase propagation, and antenna element radiation patterns.

Generalizing to multiple scatterers, x observed at the CRPA is written

x = xN + xj +

M∑
m=1

xs,m = xN + xj +

M∑
m=1

Γmx̃s,m. (4.18)
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Now, the mixed scattering covariance matrix is defined as

RM = E
[
xx†

]
= σ2I + RM , (4.19)

and removing the AWGN component gives us the partial mixed scattering covariance matrix,

RM = xjx
†
j +

M∑
n=1

M∑
m=1

E [ΓnΓ∗m] x̃s,nx̃
†
s,m +

M∑
p=1

E [Γp] x̃s,px
†
j +

M∑
q=1

E
[
Γ∗q
]
xjx̃

†
s,q . (4.20)

Taking the expectation of (4.17) eliminates the diffuse portion in the two single sums, i.e.

E [Γp,q] = ςΓms, whereas the expectation in the double summation is

E [ΓnΓ∗m] = (ςΓms)
2 + δnm (1− ς)2 Γ2

md . (4.21)

The independent and fully correlated cases can be recovered by allowing ς to be zero or

one, respectively.

Intermediate values of ς exhibit some similarities to the independent formulation. Fig-

ure 4.7 shows the relationship between the eigenvalues of RM for different values of Γmd

and Γms. The traces in the figure are the median eigenvalues across 1000 realizations for

each value of ς. The three minor eigenvalues are dependent on ς and Γmd only, with Γms

having no effect. The difference in these minor eigenvalues drops by 6 dB when Γmd is cut

in half, and they decrease at a rate of 10 dB per decade with 1− ς. Following this trend, the

largest minor eigenvalue for Γmd = 1 will be equal to the noise power when ς = 0.997. This

value corresponds to an initial jammer to noise ratio of 60 dB. For jammers with lower

power relative to the noise power, the minor eigenvalues will fall below the noise floor for a

smaller value of ς.

The major eigenvalue is affected by both Γmd and Γms. As ς approaches 0 the value

of Γmd has a greater effect, as can be seen by comparing Fig. 4.7a with Fig. 4.7g. The

right-hand side of these figures approaches the independent case, or fully diffuse reflection,

and a lower diffuse reflection coefficient results in less overall power at the CRPA. The left-

hand side of the plot represents more specular reflection, and so the effect of Γms is more

pronounced, as can be seen by comparing Figs. 4.7a, 4.7b, and 4.7c. Similarly, decreasing
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Figure 4.8: Median output power after nulling for different values of the specular reflection
factor, ς.

the specular reflection coefficient reduces the coherent sum in the dependent case, and so

the major eigenvalue converges to a value reduced in proportion to Γms.

Recording the output power for these cases gives a similar result. Figure 4.8 shows the

median output power, w†RMw, as a function of ς. The same 10 dB per decade relationship

appears here, and for the blue trace, output power will be equal to the noise power at

1 − ς = −50 dB or ς = 0.997. The intersection with the Pout = 0 dBN axis occurs more

quickly for smaller values of Γmd, such as depicted by the yellow trace of Fig. 4.8.

The analysis in Fig. 4.7 assumes that each scatterer has the same values of Γmd and Γms.

A more likely scenario is that the scatterer reflection coefficients are randomly distributed

in some range. Letting Γmd,Γms ∼ U [0.5, 1.0] and varying ς yields the red trace in Fig. 4.8.

Here the red and yellow traces are 2.5 dB and 6 dB below the blue trace, which correspond

to a factor of 0.75, the expected value of Γms, and 0.5 respectively. Here the yellow trace
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is 6 dB below the blue trace, corresponding to a factor of 0.5 which matches the values of

Γms and Γmd. The red trace is 2.5 dB below the blue, which matches the expected values,

E [Γms] = E [Γmd] = 0.75.

A similar analysis can be carried out for two independent jammer in a multipath envi-

ronment. If a single jammer can be mitigated provided there is a large enough correlation

with its reflected components, it stands to reason that two can as well. Figure 4.9 shows the

eigenvalues for multipath environments with two jammers. As in Fig. 4.7, each realiza-

tion comprises M = 10 randomly placed scatterers, and the CRPA receives two statistically

independent line-of-sight components as well as two statistically independent groups of scat-

tered fields. Scattered fields do have statistical dependence with other fields within the same

group, as well as with the jammer which originated them, and that dependence is controlled

again with ς.

In the two jammer case, RM has two major eigenvalues and two minor. The major

eigenvalues are not equal in magnitude, because the two jammers, though linearly indepen-

dent, are not orthogonal. Additionally, the minor eigenvalues are 6 dB greater than in Fig.

4.7, due to there being twice as many scattered fields present at the CRPA. The magnitude

of the largest eigenvalue has also increased, though not by 6 dB. Again, this is due to some

overlap between the eigenvectors of the two jammers, and a 6 dB increase would only be

expected if the jammers were, in fact, fully correlated.

Considering both the one jammer and two jammer cases, a direct relationship between

the minor eigenvalues ς has been shown, as well as with the overall output power. The 10 dB

per decade drop occurs because multipath components arising from specular reflection add

in phase, and are mitigated by a CRPA with any number of elements. The coherent jammer

power is proportional to the specular reflection factor, and as ς approaches 1, the jammer

power mitigated by the CRPA approaches the total power.

4.4 Time Domain Scattering

The phase variations and statistical independence in multipath environments is due to

the relative motion of scattering objects. Fields scattered from a moving object exhibit
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Figure 4.9: Eigenvalues of RM for varying values of Γmd and Γms, two jammer case.
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a Doppler shift, resulting in time varying phase differences at the receiver. Incorporating

motion into a deterministic scattering environment by associating random velocity vectors

to scattering objects can give rise to time varying phase differences, which may prevent an

iterative CRPA from canceling interference.

The scattered fields at the CRPA for a single jammer and M = 10 scatterers are

computed as a function of time by

EEE incs,i = Re

e
j(ωt−ψi(t))

Eθ,i


cos θs,i(t) cosφs,i(t)

cos θs,i(t) sinφs,i(t)

sin θs,i(t)

+ Eφ,i


− sinφs,i(t)

cosφs,i(t)

0



 , (4.22)

where the phase ψi(t) is a function of the velocity vector νννi,

ψi(t) = k0


(xc − νx,it) sin θs,i(t) cosφs,i(t)

+ (yc − νy,it) sin θs,i(t) sinφs,i(t)

+ (zc − νz,it) cos θs,i(t)

 . (4.23)

The dot product of the incident field is taken with the vector effective height h (θs,i(t), φs,i(t)),

which also varies with time due to the changing angles-of-arrival for the scatterers. The

load voltages are found for a matched condition, and are summed for the total load voltage

present at each of the n CRPA ports,

[
vLt
]
n

=
[
vLj
]
n

+
M∑
i=1

[
vLs,i
]
n

= |vLt |n Re{ej(ωt+βn)}. (4.24)

The in-phase and quadrature components are then computed,

[xI ]n = |vLt |n cos (2πfIF t+ βn) ,

[xQ]n = −|vLt |n sin (2πfIF t+ βn) , (4.25)

where fIF = 30 MHz is the intermediate frequency. The in-phase and quadrature vectors

are then input into the iterative algorithm (2.28).
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Figure 4.10: Input, weights, and output for time domain moving scatterer realization.

Figure 4.10 shows the results of applying Frost’s Algorithm to the input vectors (4.25)

for M = 10 scatterers moving with randomly oriented velocity vectors with a variance of

50 mph. The jammer is, again, an omni-directional dipole operating at 10 W and located

1 km from the CRPA. Scatterers are located within elevations ±5◦ relative to the receiver

and within a 1 km radius. The fading of the input channels is slow relative to the algorithm,

which updates at 125 MHz, and so the output, y, is reduced regardless of the fading. The

weights continue to change over the entire time span, never converging to one value. In

this case, R is non-stationary, and the optimal weights change with time. Over short
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periods of time the scattered fields are correlated with the jammer, though the correlation

coefficient changes with time. Despite a small number of CRPA elements, a single jammer

in a multipath environment does not severely impact CRPA operation provided there is

some correlation between the scattered fields.

The success of the iterative techniques will necessarily depend on the algorithm update

rate and the rate of variation for the respective phases. Different center frequencies, velocity

vectors, and update rates will yield a different overall performance for any distinct case.

However, for the numbers used here, it is realistic that the application of Frost’s Algorithm

to a GPS CRPA with scatterers moving at typical vehicle velocities can successfully mitigate

interference in a multipath environment.

4.5 Discussion

This chapter has presented a mixed scattering model parameterized by the specular

reflection factor, ς. Mixed scattering is modeled as a combination of specular and diffuse

scattering giving rise to statistically dependent and independent multipath components,

respectively.

As ς approaches one, the scattered components all add in phase at the CRPA, and

total cancellation is possible. This has been shown to be the case given the structure of the

partial covariance matrix under the dependence assumption. After removing the portion

of R due to Gaussian noise, R is always rank one and a null-steering solution is always

possible, even if a visible null is not.

At the other extreme, when ς approaches zero, all the scattering is modeled to be

diffuse and the multipath components, being independent, require one degree of freedom

per incident wave. Under this condition no solution is possible.

A time-domain scenario has also been presented to predict how a CRPA may behave

in the real world. The relative motion of different objects and the associated Doppler

shifts introduce random phases between different multipath components. If these phases

vary rapidly enough, the real-time CRPA implementation behaves like the independent

formulation. However, if the phases vary slowly enough relative to the algorithm update
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rate, the electromagnetic environment is dependent over sufficiently long stretches of time

to find a stable set of weights. This can be realized at the assumed vehicular speeds using

clock rates that are achievable with modern hardware.

Jammer power in this chapter has been assumed to be high relative to the noise power.

This highlights the structure of the covariance matrix well, and emphasizes differences

between dependent and independent cases. Additionally, the maximum reflection coefficient

for diffuse scattering ranges from 0.5 to 1.0. It is likely that much of the energy reflected from

a diffuse surface will be directed to angles away from the CRPA, and a smaller value may be

more appropriate. If jammer power is lower and a small fraction of that power is reflected

towards the CRPA, GPS interruption is not a foregone conclusion. The given environment

and jammer charachteristics will ultimately determine whether a CRPA design is adequate

in protecting PNT services for the user. What has been presented here is intended as a

framework for considering physical channel models to SWAP constrained systems.

Determination of appropriate values for Γmd, Γms, and ς require extensive measure-

ments in a variety of environments. No doubt some general characteristics will arise, such

as similarities in Γmd or Γms on the type of terrain or dependence of ς on the user’s veloc-

ity. However, these are only speculations at this point, as a comprehensive measurement

campaign is beyond the scope of this work.
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CHAPTER 5

POLARIZATION AND STAP CONSIDERATIONS

In this chapter, correlated and independent jamming is investigated using a generalized

scattering matrix, Γ, which includes scattering effects on the polarization of the propagating

waves. Techniques for generating realizations of Γ are described and applied to correlated

and independent jamming environments. Under these assumptions, a comparison of dual-

linear and RHCP CRPAs is presented.

Additionally, STAP techniques are discussed. Both narrowband and wideband scenarios

are presented, with two potential null-steering constraint vectors applied to each. The

wideband mitigation possible with STAP makes it the best candidate for man-portable

CRPA realizations.

5.1 Polarization

In order to compare CRPA operation when polarization degrees of freedom are in-

cluded, two four-element planar CRPA models were generated using FEKO: one with dual

linear elements, and one with RHCP elements. Both were subjected to the same multipath

environments and satellite coverage for each was logged.

The multipath environments now considered comprise a single jammer and M = 10

scatterers. These are formed in the same manner as described in Chapter 4, however,

polarization of the jammer and reflected components may now differ from one another, and

are dictated by a generalized reflection matrix, Γ of (4.6). Three relevant matrix operations
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are used to define Γ, these being rotation, reflection, and shear. First, consider the rotation

Eθ
Eφ

 = PPP

Eθ′
Eφ′

 =

cos ρ − sin ρ

sin ρ cos ρ


Eθ′
Eφ′

 , (5.1)

which does not change axial ratio or the sense of rotation, but merely rotates the locus of

the electric field by some angle ρ. Next reflection about a line defined by its normal vector,

l̂ = [lθ lφ]T , is given by

Eθ
Eφ

 = ΛΛΛ

Eθ′
Eφ′


l2θ − l2φ 2lθlφ

2lθlφ l2φ − l2θ


Eθ′
Eφ′

 . (5.2)

This transform does change the sense of rotation, i.e. a right-handed circular or elliptical

wave subject to (5.2) becomes left-handed. Finally, a shear transform is defined as one of

the following, Eθ
Eφ

 = KKKφ

Eθ′
Eφ′

 =

1 κ

0 1


Eθ′
Eφ′

 ,
Eθ
Eφ

 = KKKθ

Eθ′
Eφ′

 =

1 0

κ 1


Eθ′
Eφ′

 . (5.3)

Note that this transform will increase ‖E‖, and so does not represent any physical scattering

process. To address this, KKK must divided by 1 + κ. Now, KKK has the effect of rotating LP

fields, or changing the axial ratio of circularly and elliptically polarized waves.

Of the three matrices defined above, only KKK is capable of changing the reflected power.

However, it is rare that all of the incident power will be reflected from a scatterer. Some

portion may be transfered through the scattering oject, and the reflected waves may not all

be oriented in the same direction. To account for this decrease in power, a scalar reflection

coefficient Γ is included, giving the reflection matrix the form

Γ = ΓPPPΛΛΛKKK. (5.4)

The scalar coefficient can be strictly real or a complex number provided that ‖Γ‖ ≤ 1.
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For the purpose of the Monte Carlo simulations which follow, each scattering object is

assumed to have a unique scattering matrix, Γi. The three transforms can be defined for

each scatterer by the following random parameters. Rotation of the ith scattered field is set

by ρi ∼ U [0, 2π]. Similarly for KKK, let κi ∼ U [0, 1]. Finally, the matrix ΛΛΛ is parameterized

by a line of reflection in the θ − φ plane. This is accomplished letting β ∼ U [0, 2π] and

defining the line of reflection as

l =

cosβ

sinβ

 . (5.5)

A second consideration for ΛΛΛ must also be made, namely whether or not the reflection

takes place. When an RHCP incident electric field reflects off of a plane, the reflected fields

are LHCP. However, enforcing a reflection matrix that flips the sense of rotation for every

scattered component could artificially improve the predicted performance of a CRPA using

RHCP elements, especially if multiple reflections take place over long distances. Of course,

KKK will change the axial ratio of the scattered field, and the FEKO modeled CRPA elements

do not have perfect axial ratios either, so despite polarization mismatch, some power from

LHCP scattered fields is still present on the CRPA ports. However, the obvious choice is to

let ΛΛΛ = I2×2 with probability 1
2 and take the form of (5.2) the rest of the time. Similarly, K

is defined to act on either the θ or φ component of E, and it two will take either value with

probability 1
2 . Finally, values of Γ are taken to be a uniformly distributed, Γi ∼ U [0.5, 1.0].

An initial realization with M = 1 scatterer is shown in Fig. 5.1 for a CRPA with four

RHCP elements. Both independent and fully correlated formulations are plotted with the

jammer indicated by the black circle and the scatterer indicated by the brown circle. The

scattering matrix, Γ, was assumed to be the identity matrix in this case, so that the CRPA

would be presented with two RHCP incident waves. Figure 5.1a shows a deep null in the

direction of the jammer, however the scatterer seems offset from the scatter angle-of-arrival.

This is due to the CRPA elements having higher gain in the direction towards the jammer

than the scatterer. The scattered field suffers more path loss, and impinges on the CRPA

from an angle near the horizon, where the reference pattern has lower gain. Figure 5.1b

does not show good alignment between nulls and incidence angles, however this is to be
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(b) Dependent scattering, coverage = 72.4%.

Figure 5.1: Coverage maps (Cs/N0) for single scatterer and RHCP array, Γ = I2×2.
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Figure 5.2: CRPA coverage under independent and dependent scattering assumptions for
different scattering matrix models.

expected. Recall that in Fig. 4.1, the dependent formulation did not generate any visible

nulls, though cancellation did occur as shown by the drop in output power.

A comparison of satellite coverage for different CRPA configurations and scattering

assumptions is shown in Fig. 5.2. The scattering matrix was assumed to take on four

different values, an identity matrix, an LHCP matrix where the φ component is negated

to produce LHCP scattered fields, the random Γ described above, and finally the Γ of

(4.9), denoted LP in Fig. 5.2. Also, because the random Γ is scaled by Γ ∼ U [0.5, 1.0]

for each scatterer, the rest of the matrices are scaled by E [Γ] = 0.75 to prevent overly

optimistic predictions for the random Γ compared to the other forms. Independent and

fully correlated scattering was assumed for each case. The jammer and scatterers are

located near the horizon at elevation angles not exceeding 15◦, and positions of each are

determined randomly.

Unsurprisingly, the dependent cases result in higher coverage than the dependent cases.

Also, for the dependent cases, the form Γ takes makes nearly no difference on coverage.

The independent cases have more variation, in particular, the random Γ, which is the most

realistic form for Γ to take results in the highest coverage.
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In every case, the RHCP CRPA performs better than the dual-linear CRPA. Two dual-

linear elements lack the degrees of freedom to cancel multiple CP or EP jammers, and the

additional degrees of freedom that worked well for strictly LP jammers are not sufficient.

This section has shown how polarization can be incorporated into a multipath jamming

environment. It is also possible to consider mixed scattering conditions similar to those in

Chapter 4 by one of two choices in formation of ΓΓΓ. The first would be to allow the scalar

Γ be replaced by mixed reflection coefficient of (4.17), whereas the second option would be

to define separate diffuse and specular scattering matrices, and vary the proportion of each

present with ς, i.e.

ΓΓΓ = ςΓsPPP sΛΛΛsKKKs + (1− ς)ΓdPPP dΛΛΛdKKKd. (5.6)

The second of these two options would, no doubt, be a more accurate model of a physical

environment, however, obtaining realistic values for all the parameters would require a

significant measurement campaign. This analysis has been neglected here, as the limit cases

are considered. Under fully correlated scattering, CRPA performance decreases compared

to the line of sight case, though not to a complete loss of coverage. Independent scattering

is much more detrimental, but when scattering objects are close to the horizon, even this

does not guarantee a total loss of GPS service in all cases. The actual theater of operation

for a man-portable CRPA will fall somewhere between, and parameterizing this fully under

the mixed scattering model presented in this work requires field measurements to acquire

realistic values of ς.

5.2 Space-Time Adaptive Processing Analysis

The limitations imposed on a man-portable CRPA design decrease the spatial degrees

of freedom that may be feasible. Two possible candidates for improving performance and

increasing the number of jammers which may be mitigated are dual-linear elements and

STAP. In the previous section it has been shown that, though dual-linear elements do show

some promise in simulation when the total number of ports is doubled, if the number of

ports remains the same the performance is highly degraded.

Doubling the number of channels increases the SWAP requirements of the CRPA in
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a substantial way. The following discussion on STAP highlights the benefits of adding

time-domain degrees of freedom in the digital domain.

5.2.1 Narrow Band Jammers

STAP processing uses multiple time samples of the input vector, x, to introduce addi-

tional time-domain degrees off freedom for null-steering. With an additional p tapped delay

lines, x becomes

xSTAP =



x(k)

x(k − 1)

...

x(k − p)


. (5.7)

For Frost’s algorithm, (2.28) does not need to be adjusted, only the dimensions of the vectors

and the constraints. Possible constraints for STAP processing are similar to the constraints

discussed in Section 2.1, however care must now be taken to define the additional vector

elements. Consider first the Capon steering vector, ψψψ, as defined in (2.4). To implement

STAP processing in a particular direction, and at a particular frequency, phase shifted

copies of ψψψ are concatenated together to form a pN × 1 vector

ψψψSTAP =



ψψψ

ψψψe−j∆

...

ψψψe−jp∆


, (5.8)

where ∆ = 2πfIFTs.

Because STAP allows for more degrees of freedom than space-only null-steering, some

may be deployed to constrain the weights to steer towards more than one direction. If the

steering vectors, ψψψi, to the GPS SVs are known, and there are sufficient taps to balance the
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degrees of freedom for jammers and SVs, the constraint matrix may be defined as

C =



ψψψ†1 ψψψ†1e
−j∆ · · · ψψψ†1e

−jp∆

ψψψ†2 ψψψ†2e
−j∆ · · · ψψψ†2e

−jp∆

...
...

. . .
...

ψψψ†q ψψψ†qe−j∆ · · · ψψψ†qe−jp∆


, (5.9)

for p taps and q SVs. This is the constraint matrix in (2.24). This set of constraints will

offer the best performance, however it requires feedback from the GPS receiver to estimate

ψψψi and is ill suited to the modular man-portable SWAP constrained CRPA considered in

this work.

For STAP processing, two forms of blind null-steering suggest themselves for STAP.

First consider

e4 = [1 0 0 0 0 · · · 0]T , (5.10)

which is a familiar constraint vector with additional zeros concatenated at the end. This

will enforce the condition that a single reference element will remain on. However, the

vector

e5 =
1√
p− 1

[
1 0 0 0 ej∆ 0 0 0 ej2∆ 0 0 0 · · ·

]†
, (5.11)

similarly enforces the condition that a single reference element remains on, but with multiple

time samples added in phase at a particular frequency determined by ∆. When chosen

correctly, e5 adds GPS signals coherently, increasing Cs/N0.

Both e4 and e5 result in similar beam patterns when null-steering in the presence of CW

jammers. Figure 5.3 shows a single realization of the reception patterns for representative

null-steering realizations using e4 and e5 in the presence of a narrow band jammer. The

two patterns are identical, except for a 11.9 dB uniform difference. This experiment when

repeated for 1000 realizations yielded this result in each case. There is a uniform increase

in signal power due to the coherent sum of adjacent time samples, but the overall pattern

in otherwise unchanged at the frequency of interest.
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(a) Reception pattern using e4.

(b) Reception pattern using e5.

Figure 5.3: Comparison of constraint vectors for use in STAP.
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5.2.2 Wide Band Jammers

Synthesis of wideband jammers can take many forms, however the type of wideband

jammer that is most difficult to cancel is Band-limited Gaussian noise (BLGN). This wide

band noise, which overlaps the GPS spectrum and originates from a jammer, can be reduced

using STAP techniques, provided it originates from some direction. Conventional, single-

sample null-steering fails for this type of jammer, as does polarization diversity, however

STAP is able to mitigate it by producing a wide band null in the reception pattern for

multiple frequencies. To demonstrate this, the constraint vectors, e4 and e5 are applied

to traces of synthesized time domain data representing a BLGN jammer. Gaussian noise

traces are generated in MATLAB and fed into a bandpass filter matched to the GPS L1

spectrum, i.e. 1.57542 ± 10.23 MHz, to match the L1 P(Y) code. The band-limited traces

are then offset in time depending on the angles-of-arrive of the jammer, corresponding to

the differences in times-of-arrival of the plane wave at each element, resulting in the N × 1

jammer vector, xj(t). Additionally, AWGN is added to account for the antenna brightness

temperature and thermal noise in the electronics. This is the same noise referenced in earlier

results, and is uncorrelated across elements. The CRPA front end is assumed to have an

initial filtering stage for image rejection, and so xj(t) and xN (t) are filtered by a COTS

filter. The spectra of each component, the jammer and the noise, are shown in Fig. 5.4

after this first filtering stage. The next stage is downconversion, whereby the RF signals

are brought down in frequency to an intermediate frequency, fIF . This is accomplished by

mixing the input vectors with a sinusoidal local oscillator at frequency fLO,

x′j,N (t) = xj,N (t)cos(2πfLOt), (5.12)

creating copies at the sum and difference frequencies, |fc ± fLO|. Another filtering stage

must be used to eliminate the higher frequency component, leaving the downconverted

received vector,

x′′j,N (t) = hLPF (t) ∗ x′j,N (t), (5.13)
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Figure 5.4: Spectral power densities of band-limited Gaussian noise jammer and additive
white Gaussian noise present prior to image rejection.

where ∗ denotes convolution and hLPF is the impulse response of the low-pass filter. The

spectra following this filtering stage appear in Fig. 5.5. The next stage is the analog to

digital converter (ADC) with sample period Ts, which is implemented in MATLAB by down

sampling the input signal,

x′′j,N (k) = x′′j,N (k ∗ Ts). (5.14)

Following this stage, the in-phase and quadrature components must be separated. In the

preceding chapter, these were computed with (4.25) from the RF components. This assumed

IQ downconversion in hardware by mixing with a cosine and a sine, however, performing this

step with digital filters reduces the hardware requirements of the system. The quadrature

component of a signal is found using a Hilbert transformer with an ideal frequency response

of

H(f) = −jsgn(f). (5.15)
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Figure 5.5: Spectral power densities of band-limited Gaussian noise jammer and additive
white Gaussian noise present prior to downconversion.

This is approximated digitally using an FIR Hilbert filter, hH(t), however the response

is not ideal, in that high and low frequency components are cut off, and ripple exists in

the passband. To control for this, another FIR filter, hbpf (t) is constructed for the in-

phase component, which is designed to have the same passband as hH(t) and similar ripple

characteristics. Both filters are high-order to minimize the ripple. In phase and quadrature

components for an input vector, x, are then found from

xI = hbpf ∗ x, (5.16)

xQ = hH ∗ x. (5.17)

Figure 5.6 shows the spectra after I/Q generation. Note that the Hilbert transform only

imparts a 90◦ phase to the input signal, and so the power spectra for I and Q components are
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Figure 5.6: Spectral power densities of band-limited Gaussian noise jammer and additive
white Gaussian noise present prior to image rejection.

the same. Both hH and hbpf are designed for the P(Y) code spectrum after downconversion,

and so the act of digital filtering mitigates the thermal noise power above 50 MHz. The

effect is more pronounced than the anti-aliasing filter, hlpf , because of the higher filter

order.

The input vectors are nearly ready for STAP signal processing, but one more step is

necessary. Tapped delay lines are used to turn a N × 1 vector into a N(p + 1) × 1 vector

for p taps. By appending time-delayed samples of the received vector, the STAP received
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Table 5.1: Input and output power comparison for STAP constraint vectors.

Input condition Input power [dBm] e4 output power e5 output power

Noise only -117.0 -121.5 -115.7
Noise and jammer -92.9 -112.7 -112.8

vector,

xSTAP (k) =



x′′j,I(k) + x′′N,I(k)

x′′j,I(k − 1) + x′′N,I(k − 1)

...

x′′j,I(k − p) + x′′N,I(k − p)


+ j



x′′j,Q(k) + x′′N,Q(k)

x′′j,Q(k − 1) + x′′N,Q(k − 1)

...

x′′j,Q(k − p) + x′′N,Q(k − p)


, (5.18)

is found, and can be input into (2.28).

For p = 3 taps, (2.28) was applied to xSTAP using both e4 and e5. The input and

output spectra for either constraint vector appear in Fig. 5.7. The blue traces are the input

spectra, which combine both the jammer component and the thermal noise. The orange

traces show the reduction in power over a wide range of frequencies. However, a comparison

of the power levels highlights some of the differences more readily than the figure. Power

can be found by integrating over either time or frequency axes. The integration time range

is selected so that the output power can be found for only the stretch of time after w

converges. Input and output power levels appear in Table 5.1 for both STAP constraints

and different input conditions. Prior to utilizing STAP, the input power on a single channel,

with no tapped delay lines, is -92.9 dBm. The noise component only, without the jammer, is

-117.0 dBm. After STAP processing, the overall output power is -112.7 dBm and 112.8 dBm

for e4, and e5, respectively. Each of the constraint vectors reduces the the output power to

the same level, about 5 dB above the initial noise power. The increase is to be expected as

‖w‖2 > 1 in each case. However, another difference appears when considering the output

power of the STAP system in the absence of a jammer. With noise only traveling through

the system, the output power under e4 decreases to -121.5 dBm, whereas the output power

under e5 increases to -115.7 dBm. The explanation for this can be found by considering

the front end.
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(b) STAP using e5.

Figure 5.7: Input and output spectra for band-limited Gaussian noise jammer under either
STAP constraint.
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Before any filtering occurs, the thermal noise is assumed to be Gaussian, i.e., it has a

flat power spectral density over the entire frequency domain. This is a good approximation

for thermal noise, despite having infinite power. The autocorrelation for this model is the

dirac delta function, meaning distinct samples of AWGN, no matter how closely in time

they are sampled, are uncorrelated. After filtering, we have band limited Gaussian noise,

and instantaneous decorrelation no longer occurs. Adjacent time samples for the noise

component are now correlated, though noise across different elements is still uncorrelated.

This means that weights generated using e4 will actually suppress some of the AWGN as

seen in the processor. However, e5 enforces the condition that multiple time samples on the

reference element be added together, resulting in the thermal noise adding coherently. The

increase from input power is small, though, and does not negate the benefits of e5 discussed

in Section 5.2.1.

STAP increases the degrees of freedom and enables the CRPA to handle wide band

jammers, a benefit not imparted by the use of dual-linear elements. Additionally, the

STAP architecture is implemented in software and does not require additional front end

channels, which include power hungry components such as mixers and analog to digital

converters. The greater functionality without significant increases in size or power make a

STAP system the better option.

5.3 Discussion

In this chapter, it has been shown that CRPA polarization diversity in a multipath envi-

ronment, in which the polarization of scattered jammers can change substantially compared

to the original jammer, does not offer advantages over a CRPA with the same number of

degrees of freedom entirely in the spatial domain. Under full correlation, the CP CRPA pro-

duced higher coverage overall in the presence of jammers, due in no small part to the 3 dB

polarization mismatch between the GPS signals and the CRPA present in the LP CRPA.

Independent scattering reduces the coverage in each case below the 50% level, where the

probability of recovering a position solution rapidly declines. Under these circumstance, a

very minor advantage is still enjoyed by the CP CRPA. Dual-linear elements reduce the
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overall size of the array by having two ports originating from the same antenna, but in

terms of performance, there is no apparent advantage when keeping the number of channels

the same. If the number of antennas is held fixed, i.e. if the dual-linear CRPA realization

has twice the number of channels, marginal increases in performance are present at the cost

of greater power demands. The necessary hardware requirements for polarization diversity

make it less appealing than increasing degrees of freedom digitally in the time domain.

Additionally, STAP processing for both narrow-band and wideband jamming environ-

ments has been considered. Two candidate STAP constraint vectors have been suggested,

of which the vector denoted e5 offers higher signal output power, and therefore coverage.

This is due to adjacent time-samples adding coherently at the desired frequency. However,

under the receiver assumptions is Section 5.2.2 output noise power also increases by a small

amount, due to band-limited Gaussian noise not completely decorrelating instantaneously,

however, this does not outweigh the benefits seen by e5 over e4. STAP processing also has

been shown to succeed at canceling wide band jammers, which is not achieved with space-

only processing. Since STAP is performed digitally, unlike polarization diversity which must

be realized in hardware, and is able to mitigate wide band jammers, futher investigations

into man-portable CRPAs should focus on STAP rather than dual-linear elements.
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CHAPTER 6

CONCLUSIONS

Military GPS receivers deliver crucial information that influences real-time decision

making by soldiers on the ground. Unfortunately, GPS is easily jammed, both by unso-

phisticated systems and by the military powers of the world. Mitigation of jamming by

the use of CRPAs has shown promising results for large platforms, however the dismounted

soldier does not presently have a means to combat this threat. This work has investigated

considerations for a man-portable anti-jam system with a focus on the modeling of antennas

and the propagation environments they operate in. The analysis was guided by two major

factors, namely the unique SWAP constraints of wearable or hand-held CRPAs and the

dynamic changes to the operating conditions including dynamic orientation and positioning

of disjoint CRPA elements and multipath effects.

The SWAP constraints and the operating environment for a man-portable CRPA present

unique design challenges. Efficient processing by a small number of antenna elements and

associated hardware is critical for a device that must be carried by a soldier, already bur-

dened by other necessary of equipment. Furthermore, the performance of a sparse CRPA in

dynamically changing environments is dependent on a number of factors, such changes in

relative positions and orientations. In Chapter 3, techniques for modeling perturbations of

CRPA geometry were presented. From these models, an estimate of the necessary update

rate for adaptive null-steering algorithms was attained, suggesting that changes in relative

element positions and orientations could be handeled by modern processing hardware. How-

ever, these predictions do not fully capture the realities of physical antenna performance.

Mutual coupling and dielectric losses were shown in Section 3.3.2 to reduce CRPA perfor-
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mance when degrees of freedom are strained. This is of particular interest, as the operating

environment of a man-portable CRPA introduces additional multipath considerations com-

pared to similar technologies, such as vehicle or aircraft mounted platforms.

As the soldier moves through his environment, changing multipath components from

nearby objects and distant terrain have the potential to overwhelm a CRPA limited in

degrees of freedom. A single jammer along with its scattered fields can exhaust the CRPA

degrees of freedom provided that the components are sufficiently uncorrelated from one

another. In contrast, correlated multipath components require only one degree of freedom

for cancellation. To address the uncertain statistical characteristics of possible jamming

environments, a mixed scattering model was developed in Chapter 4. Under the model

assumptions, the relative power in correlated and uncorrelated multipath components is

controlled with the specular reflection factor, ς. Fully specular and diffuse reflection are

achieved by setting ς to one or zero, respectively. The minor eigenvalues of RM , which

determine the CRPAs ability to mitigate multipath components, decrease at a rate of 10 dB

per decade with 1 − ς. As ς increases, more power is transfered into the major eigenvalue

associated with the line of sight jammer and the portion of the scattered fields which

are linearly dependent with it. Some jammer power still eludes the CRPAs cancellation,

specifically, the power in the independent components. However, at a certain point this is

small relative to the noise, and GPS service can be recovered.

The mixed scattering model has been presented with values thought reasonable by

the author, and chosen to highlight the structure of RM . Yet, realistic values for ς, as

well as Γmd and Γms, are still unknown. Measuring ς for various objects and different

environments introduces many challenges, and confirmation of this model will require an

extensive measurement campaign. At present, this model is a framework with room for

refinement from experimental verification. Nevertheless, the trend demonstrated by this

model was confirmed by investigating algorithm performance in real time, simulated by

assuming scattering from objects in motion in Section 4.4. This suggests successful null-

steering is possible with objects moving at vehicular speeds provided the algorithm is able

to converge rapidly enough to keep pace with a non-stationary R.

The mixed scattering model can incorporate more general electromagnetic effects, such
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as changes in polarization from reflection. Chapter 5 incorporates a randomly parameter-

ized reflection matrix, Γ, defined by three transformations, rotation, sheer, and reflection.

This matrix was used in the fully independent and dependent cases, and suggestions for

expanding the mixed scattering framework were given in Section 5.1. Incorporation of Γ

into the model enables real-world scattering effects to be included, and enables comparisons

to be made between dual-linear and RHCP CRPAs in multipath environments.

Because increasing the degrees of freedom is of interest for both multipath consid-

erations and environments with multiple jammers present, polarimetric CRPAs must be

evaluated. Of course, it is necessary to make a distinction between the comparison that

can be made between dual-linear and RHCP CRPAs. Doubling the number of ports keeps

the CRPA size relatively unchanged, but also doubles the number of front end channels.

Increased hardware demands add to the cost, complexity, and power requirements of a sys-

tem. The benefit of this is that there are now more degrees of freedom. The comparison

in Section 3.1 is between a four port RHCP CRPA and an eight-port dual-linear CRPA.

Under these circumstances, the dual-linear elements are predicted to perform better than

the RHCP elements. However, comparing two four-port CRPAs, as in Section 5.1 is an

entirely different scenario. Now the power requirements are assumed to be the same for

both CRPAs, as are the degrees of freedom. If the CRPA design is limited to four ports,

the dual-linear CRPA does not offer any advantages over the RHCP CRPA for any of the

assumed scattering models. The increased power demands are too high to make additional

polarimetric degrees of freedom a viable option.

Another way to increase CRPA degrees of freedom is through STAP techniques. Adding

tapped delay lines increases processing power, though this can be done digitally and does

not require additional hardware beyond potentially a larger processor. Power demands for

this technique are relatively modest by comparison, as these additional degrees of freedom

do not require any extra ADC channels, or local oscillators. Furthermore, this is not the

only advantage offered by STAP. Of the methods considered in this work, only STAP is

capable of canceling band-limited Gaussian noise jammers. Section 5.2 demonstrated this,

and suggested a possible constraint vector to increase GPS signal power by adding adjacent

time samples coherently at the GPS frequency. The multiple advantages to STAP processing
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make it the best candidate for implementing a man-portable CRPA.

Modern military operations rely heavily on the electromagnetic spectrum. This is

known to our allies and our adversaries. GPS is particularly vulnerable to jamming, though

the problem also extends to communications and sensor networks, and this trend shows

no sign of stopping. New techniques and technologies are needed to protect our interests,

and adaptable modeling methods are necessary to their development. Considerations for a

man-portable GPS CRPA have motivated this work, but it is intended to be general enough

to find use in multiple domains.
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