470 research outputs found

    Using TEI for an Endangered Language Lexical Resource: The NxaʔamxcĂ­n Database-Dictionary Project

    Get PDF
    This paper describes the evolution of a lexical resource project for NxaʔamxcĂ­n, an endangered Salish language, from the project’s inception in the 1990s, based on legacy materials recorded in the 1960s and 1970s, to its current form as an online database that is transformable into various print and web-based formats for varying uses. We illustrate how we are using TEI P5 for data-encoding and archiving and show that TEI is a mature, reliable, flexible standard which is a valuable tool for lexical and morphological markup and for the production of lexical resources. Lexical resource creation, as is the case with language documentation and description more generally, benefits from portability and thus from conformance to standards (Bird and Simons 2003, Thieberger 2011). This paper therefore also discusses standards-harmonization, focusing on our attempt to achieve interoperability in format and terminology between our database and standards proposed for LMF, RELISH and GOLD. We show that, while it is possible to achieve interoperability, ultimately it is difficult to do so convincingly, thus raising questions about what conformance to standards means in practice.National Foreign Language Resource Cente

    The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    Get PDF
    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data

    Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays

    Full text link
    The communication range of wireless networks can be greatly improved by using distributed beamforming from a set of independent radio nodes. One of the key challenges in establishing a beamformed communication link from separate radios is achieving carrier frequency and sample timing synchronization. This paper describes an implementation that addresses both carrier frequency and sample timing synchronization simultaneously using RF signaling between designated master and slave nodes. By using a pilot signal transmitted by the master node, each slave estimates and tracks the frequency and timing offset and digitally compensates for them. A real-time implementation of the proposed system was developed in GNU Radio and tested with Ettus USRP N210 software defined radios. The measurements show that the distributed array can reach a residual frequency error of 5 Hz and a residual timing offset of 1/16 the sample duration for 70 percent of the time. This performance enables distributed beamforming for range extension applications.Comment: Submitted to 2019 IEEE Aerospace Conferenc

    Generalized DFT: extensions in communications

    Get PDF
    Discrete Fourier Transform (DFT) is a restricted version of Generalized DFT (GDFT) which offers a very limited number of sets to be used in a multicarrier communication system. In contrast, as an extension on Discrete Fourier Transform (DFT) from the linear phase to non-linear phase, the proposed GDFT provides many possible carrier sets of various lengths with comparable or better performance than DFT. The availability of the rich library of orthogonal constant amplitude transforms with good performance allows people to design adaptive systems where user code allocations are made dynamically to exploit the current channel conditions in order to deliver better performance. For MIMO Radar systems, the ideal case to detect a moving target is when all waveforms are orthogonal, which can provide an accurate estimation. But this is not practical in distributed MIMO radars, where sensors are at varying distances from a target. Orthogonal waveforms with low auto- and cross-correlations are of great interest for MIMO radar applications with distributed antennas. Finite length orthogonal codes are required in real-world applications where frequency selectivity and signal correlation features of the optimal subspace are compromised. In the first part of the dissertation, a method is addressed to design optimal waveforms which meets above requirements for various radar systems by designing the phase shaping function (PSF) of GDFT framework with non-linear phase. Multicarrier transmission such as orthogonal frequency-division multiplexing (OFDM) has seen a rise in popularity in wireless communication, as it offers a promising choice for high speed data rate transmission. Meanwhile, high peak-to-average power ratio (PAPR) is one of the well-known drawbacks of the OFDM system due to reduced power efficiency in non-linear modules. Such a situation leads to inefficient amplification and increases the cost of the system, or increases in interference and signal distortion. Therefore, PAPR reduction techniques play an essential role to improve power efficiency in the OFDM systems. There has been a variety of PAPR reduction methods emphasizing different aspects proposed in the literature. The trade-off for PAPR reduction in the existing methods is either increased average power and/or added computational complexity. A new PAPR reduction scheme is proposed that implements a pre-designed symbol alphabet modifier matrix (SAM) to jointly modify the amplitude and phase values of the original data symbol alphabets prior to the IFFT operation of an OFDM system at the transmitter. The method formulated with the GDFT offers a low-complexity framework in four proposed cases devised to be independent of original data symbols. Without degrading the bit error rate (BER) performance, it formulates PAPR reduction problem elegantly and outperforms partial transmit sequences (PTS), selected mapping technique (SLM) and Walsh Hadamard transform (WHT-OFDM) significantly for the communication scenarios considered in the dissertation

    The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies

    Get PDF
    We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of similar to 27 Crab Units above 1 TeV was measured in very high energy (VHE) gamma-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE gamma-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE gamma-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy gamma-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of similar to 25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (delta greater than or similar to 33) and the size of the emission region (delta R--1(B) less than or similar to 3.8 x 10(13) cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model
    • 

    corecore