12 research outputs found

    Wide-Speed Autopilot System for a Swimming Hexapod Robot

    Full text link

    Toward Long-Endurance Flight- Tamkang’s Aspect of Micro Ornithopters

    Get PDF
    [[notice]]補正完

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    The Rational Behavior Model: a multi-paradigm, tri-level software architecture for the control of autonomous vehicles

    Get PDF
    There is currently a very strong interest among researchers in the fields of artificial intelligence and robotics in finding more effective means of linking high level symbolic computations relating to mission planning and control for autonomous vehicles to low level vehicle control software. The diversity exhibited by the many processes involved in such control has resulted in a number of proposals for a general software architecture intended to provide an efficient yet flexible framework for the organization and interaction of relevant software components. The Rational Behavior Model (RBM) has been developed with these requirements in mind and consists of three levels, called the Strategic, the Tactical, and the Execution levels, respectively. Each level reflects computations supporting the solution to the global control problem based on different abstraction mechanisms. The unique contribution of the RBM architecture is the idea of specifying different programming paradigms to realize each software level. Specifically, RBM uses rule-based programming for the Strategic level, thereby permitting field reconfiguration of missions by a mission specialist without reprogramming at lower levels. The Tactical level realizes vehicle behaviors as the methods of software objects programmed in an object-based language such as Ada. These behaviors are initiated by rule satisfaction at the Strategic level, thereby rationalizing their interaction. The Execution level is programmed in any imperative language capable of supporting efficient execution of real-time control of the underlying vehicle hardware.http://archive.org/details/therationalbehav1094544438Major, United States ArmyApproved for public release; distribution is unlimited

    Bioinspired Jumping Locomotion for Miniature Robotics

    Get PDF
    In nature, many small animals use jumping locomotion to move in rough terrain. Compared to other modes of ground locomotion, jumping allows an animal to overcome obstacles that are relatively large compared to its size. In this thesis we outline the main design challenges that need to be addressed when building miniature jumping robots. We then present three novel robotic jumpers that solve those challenges and outperform existing similar jumping robots by one order of magnitude with regard to jumping height per size and weight. The robots presented in this thesis, called EPFL jumper v1, EPFL jumper v2 and EPFL jumper v3 have a weight between 7g and 14.3g and are able to jump up to 27 times their own size, with onboard energy and control. This high jumping performance is achieved by using the same mechanical design principles as found in jumping insects such as locusts or fleas. Further, we present a theoretical model which allows an evaluation whether the addition of wings could potentially allow a jumping robot to prolong its jumps. The results from the model and the experiments with a winged jumping robot indicate that for miniature robots, adding wings is not worthwhile when moving on ground. However, when jumping from an elevated starting position, adding wings can lead to longer distances traveled compared to jumping without wings. Moreover, it can reduce the kinetic energy on impact which needs to be absorbed by the robot structure. Based on this conclusion, we developed the EPFL jumpglider, the first miniature jumping and gliding robot that has been presented so far. It has a mass of 16.5g and is able to jump from elevated positions, perform steered gliding flight, land safely and locomote on ground with repetitive jumps1. ______________________________ 1See the collection of the accompanying videos at http://lis.epfl.ch/microglider/moviesAll.zi

    The New Way of War: Is There A Duty to Use Drones?

    Get PDF
    Part I of this Article briefly describes the newest battlespace occupants. Robotic systems have been taking active part in combat. They now inhabit the air, the land, and the sea. They carry out missions ranging from surveillance and bomb disposal to “destroy and disable.” Part II examines the relevant principles of LOAC. It argues that drones are not, per se, unlawful under LOAC. Rather, the critical question is the same for drones as for other types of weapons, i.e., whether the specific use of the weapon complies with LOAC. In this context, the weapon must be deployed in accordance with LOAC’s fundamental principles of humanity, proportionality, distinction, taking precautions, and military necessity. Even if a specific type of weapon is not unlawful per se (or has not been specifically prohibited by particular treaties), it may not be used improperly, e.g., in a manner that would run afoul of these principles. Part III applies the principles of LOAC to drones. First, it analyzes the general trajectories of the development of new weapons throughout human history, which has involved trading off between three main considerations, namely distance, accuracy, and lethality. Second, it examines the rise of precision-guided munitions as an attempt to balance these three considerations, increasing military efficiency while minimizing harm to civilians and civilian objects. Part IV discusses the ability of drones to combine both remote exercise of force and high accuracy to reduce lethality. Part IV also closely examines both the promised benefits that the use of drones may bring to battlespace and the challenges to their deployment. Part V returns to the question of whether states and their military commanders have an obligation to use drones in the context of an armed conflict. It argues that although there are no treaties that deal specifically with the use of drones in armed conflict and no customary norms obligating the use of drones, such a duty may be derived from the cardinal principles of the law of armed conflict. It suggests that such an interpretation is merited if we accept that drones offer the possibility of a more humane war by combining remote and accurate use of force to reduce lethality among both friendly forces and innocent civilians. Part V concludes by setting out further challenges that ought to receive careful attention in developing and elaborating on the obligation to use drones in the battlefield

    Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program

    Get PDF
    Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft

    A Corpus-driven Approach toward Teaching Vocabulary and Reading to English Language Learners in U.S.-based K-12 Context through a Mobile App

    Get PDF
    In order to decrease teachers’ decisions of which vocabulary the focus of the instruction should be upon, a recent line of research argues that pedagogically-prepared word lists may offer the most efficient order of learning vocabulary with an optimized context for instruction in each of four K-12 content areas (math, science, social studies, and language arts) through providing English Language Learners (ELLs) with the most frequent words in each area. Educators and school experts have acknowledged the need for developing new materials, including computerized enhanced texts and effective strategies aimed at improving ELLs’ mastery of academic and STEM-related lexicon. Not all words in a language are equal in their role in comprehending the language and expressing ideas or thoughts. For this study, I used a corpus-driven approach which is operationalized by applying a text analysis method. For the purpose of this research study, I made two corpora, Teacher’s U.S. Corpus (TUSC) and Science and Math Academic Corpus for Kids (SMACK) with a focus on word lemma rather than inflectional and derivational variants of word families. To create the corpora, I collected and analyzed a total of 122 textbooks used commonly in the states of Florida and California. Recruiting, scanning and converting of textbooks had been carried out over a period of more than two years from October 2014 to March 2017. In total, this school corpus contains 10,519,639 running words and 16,344 lemmas saved in 16,315 word document pages. From the corpora, I developed six word lists, namely three frequency-based word lists (high-, mid-, and low-frequency), academic and STEM-related word lists, and essential word list (EWL). I then applied the word lists as the database and developed a mobile app, Vocabulary in Reading Study – VIRS, (available on App Store, Android and Google Play) alongside a website (www.myvirs.com). Also, I developed a new K-12 dictionary which targets the vocabulary needs of ELLs in K-12 context. This is a frequency-based dictionary which categorizes words into three groups of high, medium and low frequency words as well as two separate sections for academic and STEM words. The dictionary has 16,500 lemmas with derivational and inflectional forms
    corecore