13 research outputs found

    Data Access for LIGO on the OSG

    Full text link
    During 2015 and 2016, the Laser Interferometer Gravitational-Wave Observatory (LIGO) conducted a three-month observing campaign. These observations delivered the first direct detection of gravitational waves from binary black hole mergers. To search for these signals, the LIGO Scientific Collaboration uses the PyCBC search pipeline. To deliver science results in a timely manner, LIGO collaborated with the Open Science Grid (OSG) to distribute the required computation across a series of dedicated, opportunistic, and allocated resources. To deliver the petabytes necessary for such a large-scale computation, our team deployed a distributed data access infrastructure based on the XRootD server suite and the CernVM File System (CVMFS). This data access strategy grew from simply accessing remote storage to a POSIX-based interface underpinned by distributed, secure caches across the OSG.Comment: 6 pages, 3 figures, submitted to PEARC1

    Optimistic replication

    Get PDF
    Data replication is a key technology in distributed data sharing systems, enabling higher availability and performance. This paper surveys optimistic replication algorithms that allow replica contents to diverge in the short term, in order to support concurrent work practices and to tolerate failures in low-quality communication links. The importance of such techniques is increasing as collaboration through wide-area and mobile networks becomes popular. Optimistic replication techniques are different from traditional “pessimistic ” ones. Instead of synchronous replica coordination, an optimistic algorithm propagates changes in the background, discovers conflicts after they happen and reaches agreement on the final contents incrementally. We explore the solution space for optimistic replication algorithms. This paper identifies key challenges facing optimistic replication systems — ordering operations, detecting and resolving conflicts, propagating changes efficiently, and bounding replica divergence — and provides a comprehensive survey of techniques developed for addressing these challenges

    Dynamic replication strategies in data grid systems: A survey

    Get PDF
    In data grid systems, data replication aims to increase availability, fault tolerance, load balancing and scalability while reducing bandwidth consumption, and job execution time. Several classification schemes for data replication were proposed in the literature, (i) static vs. dynamic, (ii) centralized vs. decentralized, (iii) push vs. pull, and (iv) objective function based. Dynamic data replication is a form of data replication that is performed with respect to the changing conditions of the grid environment. In this paper, we present a survey of recent dynamic data replication strategies. We study and classify these strategies by taking the target data grid architecture as the sole classifier. We discuss the key points of the studied strategies and provide feature comparison of them according to important metrics. Furthermore, the impact of data grid architecture on dynamic replication performance is investigated in a simulation study. Finally, some important issues and open research problems in the area are pointed out

    A binding approach to scientific data and metadata management

    Get PDF

    Design and implementation of a secure wide-area object middleware

    Get PDF
    Tanenbaum, A.S. [Promotor]Crispo, C.B. [Copromotor

    Applications Development for the Computational Grid

    Get PDF
    corecore