34 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    A Survey on Multi-AP Coordination Approaches over Emerging WLANs: Future Directions and Open Challenges

    Full text link
    Recent advancements in wireless local area network (WLAN) technology include IEEE 802.11be and 802.11ay, often known as Wi-Fi 7 and WiGig, respectively. The goal of these developments is to provide Extremely High Throughput (EHT) and low latency to meet the demands of future applications like as 8K videos, augmented and virtual reality, the Internet of Things, telesurgery, and other developing technologies. IEEE 802.11be includes new features such as 320 MHz bandwidth, multi-link operation, Multi-user Multi-Input Multi-Output, orthogonal frequency-division multiple access, and Multiple-Access Point (multi-AP) coordination (MAP-Co) to achieve EHT. With the increase in the number of overlapping APs and inter-AP interference, researchers have focused on studying MAP-Co approaches for coordinated transmission in IEEE 802.11be, making MAP-Co a key feature of future WLANs. Moreover, similar issues may arise in EHF bands WLAN, particularly for standards beyond IEEE 802.11ay. This has prompted researchers to investigate the implementation of MAP-Co over future 802.11ay WLANs. Thus, in this article, we provide a comprehensive review of the state-of-the-art MAP-Co features and their shortcomings concerning emerging WLAN. Finally, we discuss several novel future directions and open challenges for MAP-Co.Comment: The reason for the replacement of the previous version of the paper is due to a change in the author's list. As a result, a new version has been created, which serves as the final draft version before acceptance. This updated version contains all the latest changes and improvements made to the pape

    Cellular and Wi-Fi technologies evolution: from complementarity to competition

    Get PDF
    This PhD thesis has the characteristic to span over a long time because while working on it, I was working as a research engineer at CTTC with highly demanding development duties. This has delayed the deposit more than I would have liked. On the other hand, this has given me the privilege of witnessing and studying how wireless technologies have been evolving over a decade from 4G to 5G and beyond. When I started my PhD thesis, IEEE and 3GPP were defining the two main wireless technologies at the time, Wi-Fi and LTE, for covering two substantially complementary market targets. Wi-Fi was designed to operate mostly indoor, in unlicensed spectrum, and was aimed to be a simple and cheap technology. Its primary technology for coexistence was based on the assumption that the spectrum on which it was operating was for free, and so it was designed with interference avoidance through the famous CSMA/CA protocol. On the other hand, 3GPP was designing technologies for licensed spectrum, a costly kind of spectrum. As a result, LTE was designed to take the best advantage of it while providing the best QoE in mainly outdoor scenarios. The PhD thesis starts in this context and evolves with these two technologies. In the first chapters, the thesis studies radio resource management solutions for standalone operation of Wi-Fi in unlicensed and LTE in licensed spectrum. We anticipated the now fundamental machine learning trend by working on machine learning-based radio resource management solutions to improve LTE and Wi-Fi operation in their respective spectrum. We pay particular attention to small cell deployments aimed at improving the spectrum efficiency in licensed spectrum, reproducing small range scenarios typical of Wi-Fi settings. IEEE and 3GPP followed evolving the technologies over the years: Wi-Fi has grown into a much more complex and sophisticated technology, incorporating the key features of cellular technologies, like HARQ, OFDMA, MU-MIMO, MAC scheduling and spatial reuse. On the other hand, since Release 13, cellular networks have also been designed for unlicensed spectrum. As a result, the two last chapters of this thesis focus on coexistence scenarios, in which LTE needs to be designed to coexist with Wi-Fi fairly, and NR, the radio access for 5G, with Wi-Fi in 5 GHz and WiGig in 60 GHz. Unlike LTE, which was adapted to operate in unlicensed spectrum, NR-U is natively designed with this feature, including its capability to operate in unlicensed in a complete standalone fashion, a fundamental new milestone for cellular. In this context, our focus of analysis changes. We consider that these two technological families are no longer targeting complementarity but are now competing, and we claim that this will be the trend for the years to come. To enable the research in these multi-RAT scenarios, another fundamental result of this PhD thesis, besides the scientific contributions, is the release of high fidelity models for LTE and NR and their coexistence with Wi-Fi and WiGig to the ns-3 open-source community. ns-3 is a popular open-source network simulator, with the characteristic to be multi-RAT and so naturally allows the evaluation of coexistence scenarios between different technologies. These models, for which I led the development, are by academic citations, the most used open-source simulation models for LTE and NR and havereceived fundings from industry (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) and federal agencies (NIST, LLNL) over the years.Aquesta tesi doctoral té la característica d’allargar-se durant un llarg període de temps ja que mentre treballava en ella, treballava com a enginyera investigadora a CTTC amb tasques de desenvolupament molt exigents. Això ha endarrerit el dipositar-la més del que m’hagués agradat. D’altra banda, això m’ha donat el privilegi de ser testimoni i estudiar com han evolucionat les tecnologies sense fils durant més d’una dècada des del 4G fins al 5G i més enllà. Quan vaig començar la tesi doctoral, IEEE i 3GPP estaven definint les dues tecnologies sense fils principals en aquell moment, Wi-Fi i LTE, que cobreixen dos objectius de mercat substancialment complementaris. Wi-Fi va ser dissenyat per funcionar principalment en interiors, en espectre sense llicència, i pretenia ser una tecnologia senzilla i barata. La seva tecnologia primària per a la convivència es basava en el supòsit que l’espectre en el que estava operant era de franc, i, per tant, es va dissenyar simplement evitant interferències a través del famós protocol CSMA/CA. D’altra banda, 3GPP estava dissenyant tecnologies per a espectres amb llicència, un tipus d’espectre costós. Com a resultat, LTE està dissenyat per treure’n el màxim profit alhora que proporciona el millor QoE en escenaris principalment a l’aire lliure. La tesi doctoral comença amb aquest context i evoluciona amb aquestes dues tecnologies. En els primers capítols, estudiem solucions de gestió de recursos de radio per a operacions en espectre de Wi-Fi sense llicència i LTE amb llicència. Hem anticipat l’actual tendència fonamental d’aprenentatge automàtic treballant solucions de gestió de recursos de radio basades en l’aprenentatge automàtic per millorar l’LTE i Wi-Fi en el seu espectre respectiu. Prestem especial atenció als desplegaments de cèl·lules petites destinades a millorar la eficiència d’espectre llicenciat, reproduint escenaris de petit abast típics de la configuració Wi-Fi. IEEE i 3GPP van seguir evolucionant les tecnologies al llarg dels anys: El Wi-Fi s’ha convertit en una tecnologia molt més complexa i sofisticada, incorporant les característiques clau de les tecnologies cel·lulars, com ara HARQ i la reutilització espacial. D’altra banda, des de la versió 13, també s’han dissenyat xarxes cel·lulars per a espectre sense llicència. Com a resultat, els dos darrers capítols d’aquesta tesi es centren en aquests escenaris de convivència, on s’ha de dissenyar LTE per conviure amb la Wi-Fi de manera justa, i NR, l’accés a la radio per a 5G amb Wi-Fi a 5 GHz i WiGig a 60 GHz. A diferència de LTE, que es va adaptar per funcionar en espectre sense llicència, NR-U està dissenyat de forma nativa amb aquesta característica, inclosa la seva capacitat per operar sense llicència de forma autònoma completa, una nova fita fonamental per al mòbil. En aquest context, el nostre focus d’anàlisi canvia. Considerem que aquestes dues famílies de tecnologia ja no estan orientades cap a la complementarietat, sinó que ara competeixen, i afirmem que aquesta serà el tendència per als propers anys. Per permetre la investigació en aquests escenaris multi-RAT, un altre resultat fonamental d’aquesta tesi doctoral, a més de les aportacions científiques, és l’alliberament de models d’alta fidelitat per a LTE i NR i la seva coexistència amb Wi-Fi a la comunitat de codi obert ns-3. ns-3 és un popular simulador de xarxa de codi obert, amb la característica de ser multi-RAT i, per tant, permet l’avaluació de manera natural d’escenaris de convivència entre diferents tecnologies. Aquests models, pels quals he liderat el desenvolupament, són per cites acadèmiques, els models de simulació de codi obert més utilitzats per a LTE i NR i que han rebut finançament de la indústria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) i agències federals (NIST, LLNL) al llarg dels anys.Esta tesis doctoral tiene la característica de extenderse durante mucho tiempo porque mientras trabajaba en ella, trabajaba como ingeniera de investigación en CTTC con tareas de desarrollo muy exigentes. Esto ha retrasado el depósito más de lo que me hubiera gustado. Por otro lado, gracias a ello, he tenido el privilegio de presenciar y estudiar como las tecnologías inalámbricas han evolucionado durante una década, de 4G a 5G y más allá. Cuando comencé mi tesis doctoral, IEEE y 3GPP estaban definiendo las dos principales tecnologías inalámbricas en ese momento, Wi-Fi y LTE, cumpliendo dos objetivos de mercado sustancialmente complementarios. Wi-Fi fue diseñado para funcionar principalmente en interiores, en un espectro sin licencia, y estaba destinado a ser una tecnología simple y barata. Su tecnología primaria para la convivencia se basaba en el supuesto en que el espectro en el que estaba operando era gratis, y así fue diseñado simplemente evitando interferencias a través del famoso protocolo CSMA/CA. Por otro lado, 3GPP estaba diseñando tecnologías para espectro con licencia, un tipo de espectro costoso. Como resultado, LTE está diseñado para aprovechar el espectro al máximo proporcionando al mismo tiempo el mejor QoE en escenarios principalmente al aire libre. La tesis doctoral parte de este contexto y evoluciona con estas dos tecnologías. En los primeros capítulos, estudiamos las soluciones de gestión de recursos de radio para operación en espectro Wi-Fi sin licencia y LTE con licencia. Anticipamos la tendencia ahora fundamental de aprendizaje automático trabajando en soluciones de gestión de recursos de radio para mejorar LTE y funcionamiento deWi-Fi en su respectivo espectro. Prestamos especial atención a las implementaciones de células pequeñas destinadas a mejorar la eficiencia de espectro licenciado, reproduciendo los típicos escenarios de rango pequeño de la configuración Wi-Fi. IEEE y 3GPP siguieron evolucionando las tecnologías a lo largo de los años: Wi-Fi se ha convertido en una tecnología mucho más compleja y sofisticada, incorporando las características clave de las tecnologías celulares, como HARQ, OFDMA, MU-MIMO, MAC scheduling y la reutilización espacial. Por otro lado, desde la Release 13, también se han diseñado redes celulares para espectro sin licencia. Como resultado, los dos últimos capítulos de esta tesis se centran en estos escenarios de convivencia, donde LTE debe diseñarse para coexistir con Wi-Fi de manera justa, y NR, el acceso por radio para 5G con Wi-Fi en 5 GHz y WiGig en 60 GHz. A diferencia de LTE, que se adaptó para operar en espectro sin licencia, NR-U está diseñado de forma nativa con esta función, incluyendo su capacidad para operar sin licencia de forma completamente independiente, un nuevo hito fundamental para los celulares. En este contexto, cambia nuestro enfoque de análisis. Consideramos que estas dos familias tecnológicas ya no tienen como objetivo la complementariedad, sino que ahora están compitiendo, y afirmamos que esta será la tendencia para los próximos años. Para permitir la investigación en estos escenarios de múltiples RAT, otro resultado fundamental de esta tesis doctoral, además de los aportes científicos, es el lanzamiento de modelos de alta fidelidad para LTE y NR y su coexistencia con Wi-Fi y WiGig a la comunidad de código abierto de ns-3. ns-3 es un simulador popular de red de código abierto, con la característica de ser multi-RAT y así, naturalmente, permite la evaluación de escenarios de convivencia entre diferentes tecnologías. Estos modelos, para los cuales lideré el desarrollo, son por citas académicas, los modelos de simulación de código abierto más utilizados para LTE y NR y han recibido fondos de la industria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) y agencias federales (NIST, LLNL) a lo largo de los años.Postprint (published version

    A Detailed Characterization of 60 GHz Wi-Fi (IEEE 802.11ad)

    Get PDF
    The emergence of wireless local area network (WLAN) standards and the global system of mobile communication (GSM) in the early 1990s incited tremendous growth in the demand for wireless connectivity. Iterative technological enhancements to cellular and WLAN improved wireless capacity and created a breadth of new mobile applications. The continued increase in display resolutions and image quality combined with streaming displacing satellite/cable has created unprecedented demands on wireless infrastructure. Data-caps on cellular networks deter over consumption and increasingly shift the growing burden to Wi-Fi networks. The traditional 2.4/5 GHz Wi-Fi bands have become overloaded and the increasing number of wireless devices in the home, public, and workplace create difficult challenges to deliver quality service to large numbers of client stations. In dense urban areas, the wireless medium is subjected to increased interference due to overlapping networks and other devices communicating in the same frequency bands. Improvements to conventional Wi-Fi are approaching their theoretical limits and higher order enhancements require idealized conditions which are seldom attainable in practice. In an effort to supplant to scaling capacity requirements a very high frequency WLAN amendment has been proposed (IEEE 802.11ad). IEEE 802.11ad, also referred to as Wireless Gigabit (WiGig), operates in the globally unlicensed 60 GHz band and offers channel bandwidths nearly 100x as wide as 802.11n. The higher bandwidth facilitates multi-Gbps throughput even with the use of lower complexity modulation coding schemes (MCS). IEEE 802.11ad relies heavily on rate adaptation and high beamforming gain to mitigate interference and fading as signals in the 60 GHz band suffer from higher atmospheric ab- sorption and free space path loss (FSPL). Due to the unique nature of 60 GHz wireless there have been numerous research efforts. Many studies have been directed at simulation and modeling of the 60 GHz channel. However modeling the channel is difficult as real- world environments are highly dynamic with varying link quality and conditions which cannot be accurately predicted by conventional techniques. Some research is focused on medium access control (MAC) enhancements to improve overall capacity by coordinating concurrent links or reducing communication overhead for example. Lastly, there has been a limited amount of real world testing of 802.11ad due to lack of availability of commercial platforms and measurement instrumentation. Some researchers tested early generation devices in certain use cases such as in vehicles for media streaming, in data centers to augment the wired network, or in basic indoor and outdoor environments. This research contains two main components. In the first study, analytical models are applied to estimate line of sight (LOS) 802.11ad performance for realistic antenna param- eters. The second part contains a comprehensive evaluation of performance and reliability of early generation 802.11ad hardware. This characterization emphasizes environmen- tal performance (e.g. conference room, cubical farm, open office), multiple-client testing (multiclient), multiple network interference (spatial re-use), and stability in the presence of station mobility, physical obstructions, and antenna misalignment. In order to evaluate 802.11ad, early generation platforms from technology vendors were used in extensive test suites. The hardware tested included docks for wireless personal area networking (WPAN) applications, client laptop stations, and reference design access points (APs). Finally, a customized proof-of-concept (PoC) platform was engineered which allowed finer control over front end antenna configuration parameters such as: topology, placement and orienta- tion. The PoC also served as a suitable means to identify practical limitations and system design engineering challenges associated with supporting directional multi-Gbps (DMG) communication in the 60 GHz band

    Millimeter Wave Beamforming Training: A Reinforcement Learning Approach

    Get PDF
    Beamforming training (BT) is considered as an essential process to accomplish the communications in the millimeter wave (mmWave) band, i.e., 30 ~ 300 GHz. This process aims to find out the best transmit/receive antenna beams to compensate the impairments of the mmWave channel and successfully establish the mmWave link. Typically, the mmWave BT process is highly-time consuming affecting the overall throughput and energy consumption of the mmWave link establishment. In this paper, a machine learning (ML) approach, specifically reinforcement learning (RL), is utilized for enabling the mmWave BT process by modeling it as a multi-armed bandit (MAB) problem with the aim of maximizing the long-term throughput of the constructed mmWave link. Based on this formulation, MAB algorithms such as upper confidence bound (UCB), Thompson sampling (TS), epsilon-greedy (e-greedy), are utilized to address the problem and accomplish the mmWave BT process. Numerical simulations confirm the superior performance of the proposed MAB approach over the existing mmWave BT techniques.   

    Millimeter Wave Beamforming Training: A Reinforcement Learning Approach

    Get PDF
    Beamforming training (BT) is considered as an essential process to accomplish the communications in the millimeter wave (mmWave) band, i.e., 30 ~ 300 GHz. This process aims to find out the best transmit/receive antenna beams to compensate the impairments of the mmWave channel and successfully establish the mmWave link. Typically, the mmWave BT process is highly-time consuming affecting the overall throughput and energy consumption of the mmWave link establishment. In this paper, a machine learning (ML) approach, specifically reinforcement learning (RL), is utilized for enabling the mmWave BT process by modeling it as a multi-armed bandit (MAB) problem with the aim of maximizing the long-term throughput of the constructed mmWave link. Based on this formulation, MAB algorithms such as upper confidence bound (UCB), Thompson sampling (TS), epsilon-greedy (e-greedy), are utilized to address the problem and accomplish the mmWave BT process. Numerical simulations confirm the superior performance of the proposed MAB approach over the existing mmWave BT techniques.   

    Cloud Cooperated Heterogeneous Cellular Networks for Delayed Offloading using Millimeter Wave Gates

    Get PDF
    Increasing the capacity of wireless cellular network is one of the major challenges for the coming years. A lot of research works have been done to exploit the ultra-wide band of millimeter wave (mmWave) and integrate it into future cellular networks. In this paper, to efficiently utilize the mmWave band while reducing the total deployment cost, we propose to deploy the mmWave access in the form of ultra-high capacity mmWave gates distributed in the coverage area of the macro basestation (Macro BS). Delayed offloading is also proposed to proficiently exploit the gates and relax the demand of deploying a large number of them. Furthermore, a mobility-aware weighted proportional fair (WPF) user scheduling is proposed to maximize the intra-gate offloading efficiency while maintaining the long-term offloading fairness among the users inside the gate. To efficiently link the mmWave gates with the Macro BS in a unified cellular network structure, a cloud cooperated heterogeneous cellular network (CC-HetNet) is proposed. In which, the gates and the Macro BS are linked to the centralized radio access network (C-RAN) via high-speed backhaul links. Using the concept of control/user (C/U) plane splitting, signaling information is sent to the UEs through the wide coverage Macro BS, and most of users’ delayed traffic is offloaded through the ultra-high capacity mmWave gates. An enhanced access network discovery and selection function (eANDSF) based on a network wide proportional fair criterion is proposed to discover and select an optimal mmWave gate to associate a user with delayed traffic. It is interesting to find out that a mmWave gate consisting of only 4 mmWave access points (APs) can offload up to 70 GB of delayed traffic within 25 sec, which reduces the energy consumption of a user equipment (UE) by 99.6 % compared to the case of only using Macro BS without gate offloading. Also, more than a double increase in total gates offloaded bytes is obtained using the proposed eANDSF over using the conventional ANDSF proposed by 3GPP due to the optimality in selecting the associating gate. 

    Analysis and performance improvement of consumer-grade millimeter wave wireless networks

    Get PDF
    Millimeter-wave (mmWave) networks are one of the main key components in next cellular and WLANs (Wireless Local Area Networks). mmWave networks are capable of providing multi gigabit-per-second rates with very directional low-interference and high spatial reuse links. In 2013, the first 60 GHz wireless solution for WLAN appeared in the market. These were wireless docking stations under theWiGig protocol. Today, in 2019, 60 GHz communications have gained importance with the IEEE 802.11ad amendment with different products on the market, including routers, laptops and wireless Ethernet solutions. More importantly, mmWave networks are going to be used in next generation cellular networks, where smartphones will be using the 28 GHz band. For backbone links, 60 GHz communications have been proposed due to its higher directionality and unlicensed use. This thesis fits in this frame of constant development of themmWave bands to meet the needs of latency and throughput that will be necessary to support future communications. In this thesis, we first characterize the cost-effective design of COTS (commercial off-the-shelf) 60 GHz devices and later we improve their two main weaknesses, which are their low link distance and their non-ideal spatial reuse. It is critical to take into consideration the cost-effective design of COTS devices when designing networking mechanisms. This is why in this thesis we do the first-of-its-kind COTS analysis of 60 GHz devices, studying the D5000 WiGig Docking station and the TP-Link Talon IEEE 802.11ad router. We include static measurements such as the synthesized beam patterns of these devices or an analysis of the area-wide coverage that these devices can fulfill. We perform a spatial reuse analysis and study the performance of these devices under user mobility, showing how robust the link can be under user movement. We also study the feasibility of having flying mmWave links. We mount a 60 GHz COTS device into a drone and perform different measurement campaigns. In this first analysis, we see that these 60 GHz devices have a large performance gap for the achieved communication range as well as a very low spatial reuse. However, they are still suitable for low density WLANs and for next generation aerial micro cell stations. Seeing that these COTS devices are not as directional as literature suggests, we analyze how channels are not as frequency stable as expected due to the large amount of reflected signals. Ideally, frequency selective techniques could be used in these frequency selective channels in order to enlarge the range of these 60 GHz devices. To validate this, we measure real-world 60 GHz indoor channels with a bandwidth of 2 GHz and study their behavior with respect to techniques such as bitloading, subcarrier switch-off, and waterfilling. To this end, we consider a Orthogonal Frequency-Division Multiplexing (OFDM) channel as defined in the IEEE 802.11ad standard and show that in point of fact, these techniques are highly beneficial in mmWave networks allowing for a range extension of up to 50%, equivalent to power savings of up to 7 dB. In order to increase the very limited spatial reuse of these wireless networks, we propose a centralized system that allows the network to carry out the beam training process not only to maximize power but also taking into account other stations in order to minimize interference. This system is designed to work with unmodified clients. We implement and validate our system on commercial off-the-shelf IEEE 802.11ad hardware, achieving an average throughput gain of 24.67% for TCP traffic, and up to a twofold throughput gain in specific cases.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Andrés García Saavedra.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Ljiljana Simi

    INFLUENCE AGAINST HIGH FREQUENCY CHARACTRRISTICS OF TRANSMISSION LINE WITH ROUGH SURFACE

    Get PDF
    This paper describes the transmission loss of transmission line with rough surface in millimeter-wave band. High-frequency current concentrates a surface of the signal line. We thought a transmission loss of the signal line with rough surface in millimeter-wave band is larger than that of a signal line with flat surface. S[2,1] of a microstrip line is degraded by increasing the relative permeability of a signal line. Expanding the size of the rough surface blocks degrades S[2,1] of the signal line with rough surface
    corecore