249 research outputs found

    Why some heaps support constant-amortized-time decrease-key operations, and others do not

    Full text link
    A lower bound is presented which shows that a class of heap algorithms in the pointer model with only heap pointers must spend Omega(log log n / log log log n) amortized time on the decrease-key operation (given O(log n) amortized-time extract-min). Intuitively, this bound shows the key to having O(1)-time decrease-key is the ability to sort O(log n) items in O(log n) time; Fibonacci heaps [M.L. Fredman and R. E. Tarjan. J. ACM 34(3):596-615 (1987)] do this through the use of bucket sort. Our lower bound also holds no matter how much data is augmented; this is in contrast to the lower bound of Fredman [J. ACM 46(4):473-501 (1999)] who showed a tradeoff between the number of augmented bits and the amortized cost of decrease-key. A new heap data structure, the sort heap, is presented. This heap is a simplification of the heap of Elmasry [SODA 2009: 471-476] and shares with it a O(log log n) amortized-time decrease-key, but with a straightforward implementation such that our lower bound holds. Thus a natural model is presented for a pointer-based heap such that the amortized runtime of a self-adjusting structure and amortized lower asymptotic bounds for decrease-key differ by but a O(log log log n) factor

    A Tight Lower Bound for Decrease-Key in the Pure Heap Model

    Full text link
    We improve the lower bound on the amortized cost of the decrease-key operation in the pure heap model and show that any pure-heap-model heap (that has a \bigoh{\log n} amortized-time extract-min operation) must spend \bigom{\log\log n} amortized time on the decrease-key operation. Our result shows that sort heaps as well as pure-heap variants of numerous other heaps have asymptotically optimal decrease-key operations in the pure heap model. In addition, our improved lower bound matches the lower bound of Fredman [J. ACM 46(4):473-501 (1999)] for pairing heaps [M.L. Fredman, R. Sedgewick, D.D. Sleator, and R.E. Tarjan. Algorithmica 1(1):111-129 (1986)] and surpasses it for pure-heap variants of numerous other heaps with augmented data such as pointer rank-pairing heaps.Comment: arXiv admin note: substantial text overlap with arXiv:1302.664

    Hollow Heaps

    Full text link
    We introduce the hollow heap, a very simple data structure with the same amortized efficiency as the classical Fibonacci heap. All heap operations except delete and delete-min take O(1)O(1) time, worst case as well as amortized; delete and delete-min take O(logn)O(\log n) amortized time on a heap of nn items. Hollow heaps are by far the simplest structure to achieve this. Hollow heaps combine two novel ideas: the use of lazy deletion and re-insertion to do decrease-key operations, and the use of a dag (directed acyclic graph) instead of a tree or set of trees to represent a heap. Lazy deletion produces hollow nodes (nodes without items), giving the data structure its name.Comment: 27 pages, 7 figures, preliminary version appeared in ICALP 201

    Smooth heaps and a dual view of self-adjusting data structures

    Full text link
    We present a new connection between self-adjusting binary search trees (BSTs) and heaps, two fundamental, extensively studied, and practically relevant families of data structures. Roughly speaking, we map an arbitrary heap algorithm within a natural model, to a corresponding BST algorithm with the same cost on a dual sequence of operations (i.e. the same sequence with the roles of time and key-space switched). This is the first general transformation between the two families of data structures. There is a rich theory of dynamic optimality for BSTs (i.e. the theory of competitiveness between BST algorithms). The lack of an analogous theory for heaps has been noted in the literature. Through our connection, we transfer all instance-specific lower bounds known for BSTs to a general model of heaps, initiating a theory of dynamic optimality for heaps. On the algorithmic side, we obtain a new, simple and efficient heap algorithm, which we call the smooth heap. We show the smooth heap to be the heap-counterpart of Greedy, the BST algorithm with the strongest proven and conjectured properties from the literature, widely believed to be instance-optimal. Assuming the optimality of Greedy, the smooth heap is also optimal within our model of heap algorithms. As corollaries of results known for Greedy, we obtain instance-specific upper bounds for the smooth heap, with applications in adaptive sorting. Intriguingly, the smooth heap, although derived from a non-practical BST algorithm, is simple and easy to implement (e.g. it stores no auxiliary data besides the keys and tree pointers). It can be seen as a variation on the popular pairing heap data structure, extending it with a "power-of-two-choices" type of heuristic.Comment: Presented at STOC 2018, light revision, additional figure

    A Back-to-Basics Empirical Study of Priority Queues

    Full text link
    The theory community has proposed several new heap variants in the recent past which have remained largely untested experimentally. We take the field back to the drawing board, with straightforward implementations of both classic and novel structures using only standard, well-known optimizations. We study the behavior of each structure on a variety of inputs, including artificial workloads, workloads generated by running algorithms on real map data, and workloads from a discrete event simulator used in recent systems networking research. We provide observations about which characteristics are most correlated to performance. For example, we find that the L1 cache miss rate appears to be strongly correlated with wallclock time. We also provide observations about how the input sequence affects the relative performance of the different heap variants. For example, we show (both theoretically and in practice) that certain random insertion-deletion sequences are degenerate and can lead to misleading results. Overall, our findings suggest that while the conventional wisdom holds in some cases, it is sorely mistaken in others

    Pairing heaps: the forward variant

    Get PDF
    The pairing heap is a classical heap data structure introduced in 1986 by Fredman, Sedgewick, Sleator, and Tarjan. It is remarkable both for its simplicity and for its excellent performance in practice. The "magic" of pairing heaps lies in the restructuring that happens after the deletion of the smallest item. The resulting collection of trees is consolidated in two rounds: a left-to-right pairing round, followed by a right-to-left accumulation round. Fredman et al. showed, via an elegant correspondence to splay trees, that in a pairing heap of size n all heap operations take O(log n) amortized time. They also proposed an arguably more natural variant, where both pairing and accumulation are performed in a combined left-to-right round (called the forward variant of pairing heaps). The analogy to splaying breaks down in this case, and the analysis of the forward variant was left open. In this paper we show that inserting an item and deleting the minimum in a forward-variant pairing heap both take amortized time O(log(n) * 4^(sqrt(log n))). This is the first improvement over the O(sqrt(n)) bound showed by Fredman et al. three decades ago. Our analysis relies on a new potential function that tracks parent-child rank-differences in the heap

    Verification of Costless Merge Pairing Heaps

    Get PDF
    Most algorithms’ performance is limited by the data structures they use. Internal algorithms then decide the performance of the data structure. This cycle continues until fundamental results, verified by analysis and experiment, prevent further improvement. In this paper I examine one specific example of this. The focus of this work is primarily on a new variant of the pairing heap. I will review the new implementation, compare its theoretical performance, and discuss my original contribution: the first preliminary data on its experimental performance. It is instructive to provide some background information, followed by a formal definition of heaps in 1.1. I also provide a brief overview of existing literature on the design of these data structures in 1.2 and discuss the methods for evaluating these types of structures in 1.3. Full details about the implementation of a pairing heap can be found in 2.2. Ongoing research has produced a variety of different types of heaps, which will be briefly discussed

    The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree

    Get PDF
    In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an nn-vertex graph G=(V,E,w)G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set SVS \subseteq V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n)o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)(6+\varepsilon)-approximate Steiner tree of a general graph in O~(nlogD)\tilde{O}(\sqrt{n} \log D) time per terminal addition or removal. Here, DD denotes the stretch of the metric induced by GG. For planar graphs we achieve the same running time and the approximation ratio of (2+ε)(2+\varepsilon). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)(4+\varepsilon)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.Comment: Full version of the paper accepted to STOC'1
    corecore