55 research outputs found

    A t-distribution based operator for enhancing out of distribution robustness of neural network classifiers

    Full text link
    Neural Network (NN) classifiers can assign extreme probabilities to samples that have not appeared during training (out-of-distribution samples) resulting in erroneous and unreliable predictions. One of the causes for this unwanted behaviour lies in the use of the standard softmax operator which pushes the posterior probabilities to be either zero or unity hence failing to model uncertainty. The statistical derivation of the softmax operator relies on the assumption that the distributions of the latent variables for a given class are Gaussian with known variance. However, it is possible to use different assumptions in the same derivation and attain from other families of distributions as well. This allows derivation of novel operators with more favourable properties. Here, a novel operator is proposed that is derived using tt-distributions which are capable of providing a better description of uncertainty. It is shown that classifiers that adopt this novel operator can be more robust to out of distribution samples, often outperforming NNs that use the standard softmax operator. These enhancements can be reached with minimal changes to the NN architecture.Comment: 5 pages, 5 figures, to be published in IEEE Signal Processing Letters, reproducible code https://github.com/idiap/tsoftma

    DOS: Diverse Outlier Sampling for Out-of-Distribution Detection

    Full text link
    Modern neural networks are known to give overconfident prediction for out-of-distribution inputs when deployed in the open world. It is common practice to leverage a surrogate outlier dataset to regularize the model during training, and recent studies emphasize the role of uncertainty in designing the sampling strategy for outlier dataset. However, the OOD samples selected solely based on predictive uncertainty can be biased towards certain types, which may fail to capture the full outlier distribution. In this work, we empirically show that diversity is critical in sampling outliers for OOD detection performance. Motivated by the observation, we propose a straightforward and novel sampling strategy named DOS (Diverse Outlier Sampling) to select diverse and informative outliers. Specifically, we cluster the normalized features at each iteration, and the most informative outlier from each cluster is selected for model training with absent category loss. With DOS, the sampled outliers efficiently shape a globally compact decision boundary between ID and OOD data. Extensive experiments demonstrate the superiority of DOS, reducing the average FPR95 by up to 25.79% on CIFAR-100 with TI-300K
    • …
    corecore