1,248 research outputs found

    To Trust or Not To Trust Prediction Scores for Membership Inference Attacks

    Full text link
    Membership inference attacks (MIAs) aim to determine whether a specific sample was used to train a predictive model. Knowing this may indeed lead to a privacy breach. Most MIAs, however, make use of the model's prediction scores - the probability of each output given some input - following the intuition that the trained model tends to behave differently on its training data. We argue that this is a fallacy for many modern deep network architectures. Consequently, MIAs will miserably fail since overconfidence leads to high false-positive rates not only on known domains but also on out-of-distribution data and implicitly acts as a defense against MIAs. Specifically, using generative adversarial networks, we are able to produce a potentially infinite number of samples falsely classified as part of the training data. In other words, the threat of MIAs is overestimated, and less information is leaked than previously assumed. Moreover, there is actually a trade-off between the overconfidence of models and their susceptibility to MIAs: the more classifiers know when they do not know, making low confidence predictions, the more they reveal the training data.Comment: 15 pages, 8 figures, 10 table

    The Compact Support Neural Network

    Full text link
    Neural networks are popular and useful in many fields, but they have the problem of giving high confidence responses for examples that are away from the training data. This makes the neural networks very confident in their prediction while making gross mistakes, thus limiting their reliability for safety-critical applications such as autonomous driving, space exploration, etc. This paper introduces a novel neuron generalization that has the standard dot-product-based neuron and the {\color{black} radial basis function (RBF)} neuron as two extreme cases of a shape parameter. Using a rectified linear unit (ReLU) as the activation function results in a novel neuron that has compact support, which means its output is zero outside a bounded domain. To address the difficulties in training the proposed neural network, it introduces a novel training method that takes a pretrained standard neural network that is fine-tuned while gradually increasing the shape parameter to the desired value. The theoretical findings of the paper are a bound on the gradient of the proposed neuron and a proof that a neural network with such neurons has the universal approximation property. This means that the network can approximate any continuous and integrable function with an arbitrary degree of accuracy. The experimental findings on standard benchmark datasets show that the proposed approach has smaller test errors than state-of-the-art competing methods and outperforms the competing methods in detecting out-of-distribution samples on two out of three datasets.Comment: 13 pages, 6 figure

    Multidimensional Uncertainty-Aware Evidential Neural Networks

    Full text link
    Traditional deep neural networks (NNs) have significantly contributed to the state-of-the-art performance in the task of classification under various application domains. However, NNs have not considered inherent uncertainty in data associated with the class probabilities where misclassification under uncertainty may easily introduce high risk in decision making in real-world contexts (e.g., misclassification of objects in roads leads to serious accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly model the uncertainty of class probabilities and use them for classification tasks. An ENN offers the formulation of the predictions of NNs as subjective opinions and learns the function by collecting an amount of evidence that can form the subjective opinions by a deterministic NN from data. However, the ENN is trained as a black box without explicitly considering inherent uncertainty in data with their different root causes, such as vacuity (i.e., uncertainty due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting evidence). By considering the multidimensional uncertainty, we proposed a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-distribution (OOD) detection problem. We took a hybrid approach that combines Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly train a model with prior knowledge of a certain class, which has high vacuity for OOD samples. Via extensive empirical experiments based on both synthetic and real-world datasets, we demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples. WENN outperformed in OOD detection when compared with other competitive counterparts.Comment: AAAI 202

    Towards robust convolutional neural networks in challenging environments

    Get PDF
    Image classification is one of the fundamental tasks in the field of computer vision. Although Artificial Neural Network (ANN) showed a lot of promise in this field, the lack of efficient computer hardware subdued its potential to a great extent. In the early 2000s, advances in hardware coupled with better network design saw the dramatic rise of Convolutional Neural Network (CNN). Deep CNNs pushed the State-of-The-Art (SOTA) in a number of vision tasks, including image classification, object detection, and segmentation. Presently, CNNs dominate these tasks. Although CNNs exhibit impressive classification performance on clean images, they are vulnerable to distortions, such as noise and blur. Fine-tuning a pre-trained CNN on mutually exclusive or a union set of distortions is a brute-force solution. This iterative fine-tuning process with all known types of distortion is, however, exhaustive and the network struggles to handle unseen distortions. CNNs are also vulnerable to image translation or shift, partly due to common Down-Sampling (DS) layers, e.g., max-pooling and strided convolution. These operations violate the Nyquist sampling rate and cause aliasing. The textbook solution is low-pass filtering (blurring) before down-sampling, which can benefit deep networks as well. Even so, non-linearity units, such as ReLU, often re-introduce the problem, suggesting that blurring alone may not suffice. Another important but under-explored issue for CNNs is unknown or Open Set Recognition (OSR). CNNs are commonly designed for closed set arrangements, where test instances only belong to some ‘Known Known’ (KK) classes used in training. As such, they predict a class label for a test sample based on the distribution of the KK classes. However, when used under the OSR setup (where an input may belong to an ‘Unknown Unknown’ or UU class), such a network will always classify a test instance as one of the KK classes even if it is from a UU class. Historically, CNNs have struggled with detecting objects in images with large difference in scale, especially small objects. This is because the DS layers inside a CNN often progressively wipe out the signal from small objects. As a result, the final layers are left with no signature from these objects leading to degraded performance. In this work, we propose solutions to the above four problems. First, we improve CNN robustness against distortion by proposing DCT based augmentation, adaptive regularisation, and noise suppressing Activation Functions (AF). Second, to ensure further performance gain and robustness to image transformations, we introduce anti-aliasing properties inside the AF and propose a novel DS method called blurpool. Third, to address the OSR problem, we propose a novel training paradigm that ensures detection of UU classes and accurate classification of the KK classes. Finally, we introduce a novel CNN that enables a deep detector to identify small objects with high precision and recall. We evaluate our methods on a number of benchmark datasets and demonstrate that they outperform contemporary methods in the respective problem set-ups.Doctor of Philosoph
    • …
    corecore