26 research outputs found

    Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems

    Full text link
    Conditional generative models became a very powerful tool to sample from Bayesian inverse problem posteriors. It is well-known in classical Bayesian literature that posterior measures are quite robust with respect to perturbations of both the prior measure and the negative log-likelihood, which includes perturbations of the observations. However, to the best of our knowledge, the robustness of conditional generative models with respect to perturbations of the observations has not been investigated yet. In this paper, we prove for the first time that appropriately learned conditional generative models provide robust results for single observations

    Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning

    Get PDF
    To facilitate reliable deployments of autonomous robots in the real world, Out-of-Distribution (OOD) detection capabilities are often required. A powerful approach for OOD detection is based on density estimation with Normalizing Flows (NFs). However, we find that prior work with NFs attempts to match the complex target distribution topologically with naive base distributions leading to adverse implications. In this work, we circumvent this topological mismatch using an expressive class-conditional base distribution trained with an information-theoretic objective to match the required topology. The proposed method enjoys the merits of wide compatibility with existing learned models without any performance degradation and minimum computation overhead while enhancing OOD detection capabilities. We demonstrate superior results in density estimation and 2D object detection benchmarks in comparison with extensive baselines. Moreover, we showcase the applicability of the method with a real-robot deployment

    Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning

    Full text link
    To facilitate reliable deployments of autonomous robots in the real world, Out-of-Distribution (OOD) detection capabilities are often required. A powerful approach for OOD detection is based on density estimation with Normalizing Flows (NFs). However, we find that prior work with NFs attempts to match the complex target distribution topologically with naive base distributions leading to adverse implications. In this work, we circumvent this topological mismatch using an expressive class-conditional base distribution trained with an information-theoretic objective to match the required topology. The proposed method enjoys the merits of wide compatibility with existing learned models without any performance degradation and minimum computation overhead while enhancing OOD detection capabilities. We demonstrate superior results in density estimation and 2D object detection benchmarks in comparison with extensive baselines. Moreover, we showcase the applicability of the method with a real-robot deployment.Comment: Accepted on CoRL202

    CTR: Contrastive Training Recognition Classifier for Few-Shot Open-World Recognition

    Get PDF

    Out-of-Distribution Detection of Melanoma using Normalizing Flows

    Get PDF
    Generative modelling has been a topic at the forefront of machine learning research for a substantial amount of time. With the recent success in the field of machine learning, especially in deep learning, there has been an increased interest in explainable and interpretable machine learning. The ability to model distributions and provide insight in the density estimation and exact data likelihood is an example of such a feature. Normalizing Flows (NFs), a relatively new research field of generative modelling, has received substantial attention since it is able to do exactly this at a relatively low cost whilst enabling competitive generative results. While the generative abilities of NFs are typically explored, we focus on exploring the data distribution modelling for Out-of-Distribution (OOD) detection. Using one of the state-of-the-art NF models, GLOW, we attempt to detect OOD examples in the ISIC dataset. We notice that this model under performs in conform related research. To improve the OOD detection, we explore the masking methods to inhibit co-adaptation of the coupling layers however find no substantial improvement. Furthermore, we utilize Wavelet Flow which uses wavelets that can filter particular frequency components, thus simplifying the modeling process to data-driven conditional wavelet coefficients instead of complete images. This enables us to efficiently model larger resolution images in the hopes that it would capture more relevant features for OOD. The paper that introduced Wavelet Flow mainly focuses on its ability of sampling high resolution images and did not treat OOD detection. We present the results and propose several ideas for improvement such as controlling frequency components, using different wavelets and using other state-of-the-art NF architectures
    corecore