65,609 research outputs found

    Development and Validation of Clinical Whole-Exome and Whole-Genome Sequencing for Detection of Germline Variants in Inherited Disease

    Get PDF
    Context.-With the decrease in the cost of sequencing, the clinical testing paradigm has shifted from single gene to gene panel and now whole-exome and whole-genome sequencing. Clinical laboratories are rapidly implementing next-generation sequencing-based whole-exome and whole-genome sequencing. Because a large number of targets are covered by whole-exome and whole-genome sequencing, it is critical that a laboratory perform appropriate validation studies, develop a quality assurance and quality control program, and participate in proficiency testing. Objective.-To provide recommendations for wholeexome and whole-genome sequencing assay design, validation, and implementation for the detection of germline variants associated in inherited disorders. Data Sources.-An example of trio sequencing, filtration and annotation of variants, and phenotypic consideration to arrive at clinical diagnosis is discussed. Conclusions.-It is critical that clinical laboratories planning to implement whole-exome and whole-genome sequencing design and validate the assay to specifications and ensure adequate performance prior to implementation. Test design specifications, including variant filtering and annotation, phenotypic consideration, guidance on consenting options, and reporting of incidental findings, are provided. These are important steps a laboratory must take to validate and implement whole-exome and whole-genome sequencing in a clinical setting for germline variants in inherited disorders

    Whole-genome sequencing

    Get PDF
    The costs of whole-genome sequencing have rapidly decreased, and it is being increasingly deployed in large-scale clinical research projects and introduced into routine clinical care. This will lead to rapid diagnoses for patients with genetic disease but also introduces uncertainty because of the diversity of human genomes and the potential difficulties in annotating new genetic variants for individual patients and families. Here we outline the steps in organising whole-genome sequencing for patients in the neurology clinic and emphasise that close liaison between the clinician and the laboratory is essential

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    Comparison of variant calling methods for whole genome sequencing data in dairy cattle

    Get PDF
    Accurate identification of SNPs from next-generation sequencing data is crucial for high-quality downstream analysis. Whole genome sequence data of 65 key ancestors of genotyped Swiss dairy populations were available for investigation (24 billion reads, 96.8% mapped to UMD31, 12x coverage). Four publically available variant calling programmes were assessed and different levels of pre-calling handling for each method were tested and compared. SNP concordance was examined with Illumina’s BovineHD Genotyping BeadChip®. Depending on variant calling software used, between 16,894,054 and 22,048,382 SNP were identified (multi-sample calling). A total of 14,644,310 SNP were identified by all four variant callers (multi-sample calling). InDel counts ranged from 1,997,791 to 2,857,754; 1,708,649 InDels were identified by all four variant callers. A minimum of pre-calling data handling resulted in the highest non-reference sensitivity and the lowest non-reference discrepancy rates

    Direct Whole-Genome Sequencing of Cutaneous Strains of Haemophilus ducreyi.

    Get PDF
    Haemophilus ducreyi, which causes chancroid, has emerged as a cause of pediatric skin disease. Isolation of H. ducreyi in low-income settings is challenging, limiting phylogenetic investigation. Next-generation sequencing demonstrates that cutaneous strains arise from class I and II H. ducreyi clades and that class II may represent a distinct subspecies

    High-Throughput, Whole-Genome Sequencing

    Get PDF
    Since the completion of the Human Genome Project, research focusing on the consequence of known human genetic code has advanced by leaps and bounds. The development of personalized medicine, a field focused on enumerating the effects of individual genetic variations, termed SNPs, has become a reality for those researching the molecular basis of disease. With clinical correlates between genotype and prognosis becoming ever more common, the utility of personal genetic screening has become impossible to ignore. In this report, we present PennBio: a whole-genome sequencing company utilizing a novel single-molecule, real time sequencing-by-synthesis technology. Using unique zero-mode waveguides, which have revolutionized single-molecule detection, individual enzymes polymerizing novel phospholinked fluorescence labeled nucleotides can be observed as they sequence genomic template DNA. Modern optical techniques record these fragmented sequences, which are then analyzed by highly efficient alignment algorithms. A personal genomic code will ultimately allow consumers to be aware of their genetic predispositions as the medical community continues to discover them

    Whole genome sequencing of amplified Plasmodium knowlesi DNA from unprocessed blood reveals genetic exchange events between Malaysian Peninsular and Borneo subpopulations.

    Get PDF
    The zoonotic Plasmodium knowlesi parasite is the most common cause of human malaria in Malaysia. Genetic analysis has shown that the parasites are divided into three subpopulations according to their geographic origin (Peninsular or Borneo) and, in Borneo, their macaque host (Macaca fascicularis or M. nemestrina). Whilst evidence suggests that genetic exchange events have occurred between the two Borneo subpopulations, the picture is unclear in less studied Peninsular strains. One difficulty is that P. knowlesi infected individuals tend to present with low parasitaemia leading to samples with insufficient DNA for whole genome sequencing. Here, using a parasite selective whole genome amplification approach on unprocessed blood samples, we were able to analyse recent genomes sourced from both Peninsular Malaysia and Borneo. The analysis provides evidence that recombination events are present in the Peninsular Malaysia parasite subpopulation, which have acquired fragments of the M. nemestrina associated subpopulation genotype, including the DBPβ and NBPXa erythrocyte invasion genes. The NBPXb invasion gene has also been exchanged within the macaque host-associated subpopulations of Malaysian Borneo. Our work provides strong evidence that exchange events are far more ubiquitous than expected and should be taken into consideration when studying the highly complex P. knowlesi population structure
    • …
    corecore