11,052 research outputs found

    A Novel fMRI Paradigm Suggests that Pedaling-related Brain Activation is Altered after Stroke

    Get PDF
    The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities

    The relation between color spaces and compositional data analysis demonstrated with magnetic resonance image processing applications

    Full text link
    This paper presents a novel application of compositional data analysis methods in the context of color image processing. A vector decomposition method is proposed to reveal compositional components of any vector with positive components followed by compositional data analysis to demonstrate the relation between color space concepts such as hue and saturation to their compositional counterparts. The proposed methods are applied to a magnetic resonance imaging dataset acquired from a living human brain and a digital color photograph to perform image fusion. Potential future applications in magnetic resonance imaging are mentioned and the benefits/disadvantages of the proposed methods are discussed in terms of color image processing.Comment: 13 pages, 3 figures, short paper, submitted to Austrian Journal of Statistics compositional data analysis special issue, first revision, fix rendering error in fig

    An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the conservative and nonpharmacological management of female pelvic floor dysfunction

    Get PDF
    There has been an increasing need for the terminology on the conservative management of female pelvic floor dysfunction to be collated in a clinically based consensus report.This Report combines the input of members and elected nominees of the Standardization and Terminology Committees of two International Organizations, the International Urogynecological Association (IUGA) and the International Continence Society (ICS), assisted at intervals by many external referees. An extensive process of nine rounds of internal and external review was developed to exhaustively examine each definition, with decision-making by collective opinion (consensus). Before opening up for comments on the webpages of ICS and IUGA, five experts from physiotherapy, neurology, urology, urogynecology, and nursing were invited to comment on the paper.A Terminology Report on the conservative management of female pelvic floor dysfunction, encompassing over 200 separate definitions, has been developed. It is clinically based, with the most common symptoms, signs, assessments, diagnoses, and treatments defined. Clarity and ease of use have been key aims to make it interpretable by practitioners and trainees in all the different specialty groups involved in female pelvic floor dysfunction. Ongoing review is not only anticipated, but will be required to keep the document updated and as widely acceptable as possible.A consensus-based terminology report for the conservative management of female pelvic floor dysfunction has been produced, aimed at being a significant aid to clinical practice and a stimulus for research

    Keypoint Transfer for Fast Whole-Body Segmentation

    Full text link
    We introduce an approach for image segmentation based on sparse correspondences between keypoints in testing and training images. Keypoints represent automatically identified distinctive image locations, where each keypoint correspondence suggests a transformation between images. We use these correspondences to transfer label maps of entire organs from the training images to the test image. The keypoint transfer algorithm includes three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ segmentations. We report segmentation results for abdominal organs in whole-body CT and MRI, as well as in contrast-enhanced CT and MRI. Our method offers a speed-up of about three orders of magnitude in comparison to common multi-atlas segmentation, while achieving an accuracy that compares favorably. Moreover, keypoint transfer does not require the registration to an atlas or a training phase. Finally, the method allows for the segmentation of scans with highly variable field-of-view.Comment: Accepted for publication at IEEE Transactions on Medical Imagin

    Clinical utility of gadobenate dimeglumine in contrast-enhanced MRI of the breast: a review

    Get PDF
    Breast magnetic resonance imaging (MRI) is considered the technique with the highest sensitivity for breast cancer detection. Gadobenate dimeglumine is a gadolinium-based contrast agent (GBCA) that is specifically approved in Europe for breast MRI and which has the highest r1 relaxivity among all GBCAs for this indication. In order to improve the diagnostic performance of breast MRI, several intra-individual crossover studies have evaluated gadobenate dimeglumine as a possible GBCA for this application. This review focuses on the role and advantages of gadobenate dimeglumine as a contrast agent for breast MRI by describing the unique properties of this agent and by summarizing published studies
    • …
    corecore