5 research outputs found

    Who Wears Me? Bioimpedance as a Passive Biometric

    Get PDF
    Mobile and wearable systems for monitoring health are becoming common. If such an mHealth system knows the identity of its wearer, the system can properly label and store data collected by the system. Existing recognition schemes for such mobile applications and pervasive devices are not particularly usable – they require ıt active engagement with the person (e.g., the input of passwords), or they are too easy to fool (e.g., they depend on the presence of a device that is easily stolen or lost). \par We present a wearable sensor to passively recognize people. Our sensor uses the unique electrical properties of a person\u27s body to recognize their identity. More specifically, the sensor uses ıt bioimpedance – a measure of how the body\u27s tissues oppose a tiny applied alternating current – and learns how a person\u27s body uniquely responds to alternating current of different frequencies. In this paper we demonstrate the feasibility of our system by showing its effectiveness at accurately recognizing people in a household 90% of the time

    A Wearable System that Knows Who Wears It

    Get PDF
    Body-area networks of pervasive wearable devices are increasingly used for health monitoring, personal assistance, entertainment, and home automation. In an ideal world, a user would simply wear their desired set of devices with no configuration necessary: the devices would discover each other, recognize that they are on the same person, construct a secure communications channel, and recognize the user to which they are attached. In this paper we address a portion of this vision by offering a wearable system that unobtrusively recognizes the person wearing it. Because it can recognize the user, our system can properly label sensor data or personalize interactions. \par Our recognition method uses bioimpedance, a measurement of how tissue responds when exposed to an electrical current. By collecting bioimpedance samples using a small wearable device we designed, our system can determine that (a)the wearer is indeed the expected person and (b) the device is physically on the wearer\u27s body. Our recognition method works with 98% balanced-accuracy under a cross-validation of a day\u27s worth of bioimpedance samples from a cohort of 8 volunteer subjects. We also demonstrate that our system continues to recognize a subset of these subjects even several months later. Finally, we measure the energy requirements of our system as implemented on a Nexus S smart phone and custom-designed module for the Shimmer sensing platform

    Securing Medical Devices and Protecting Patient Privacy in the Technological Age of Healthcare

    Get PDF
    The healthcare industry has been adopting technology at an astonishing rate. This technology has served to increase the efficiency and decrease the cost of healthcare around the country. While technological adoption has undoubtedly improved the quality of healthcare, it also has brought new security and privacy challenges to the industry that healthcare IT manufacturers are not necessarily fully prepared to address. This dissertation explores some of these challenges in detail and proposes solutions that will make medical devices more secure and medical data more private. Compared to other industries the medical space has some unique challenges that add significant constraints on possible solutions to problems. For example, medical devices must operate reliably even in the face of attack. Similarly, due to the need to access patient records in an emergency, strict enforcement of access controls cannot be used to prevent unauthorized access to patient data. Throughout this work we will explore particular problems in depth and introduce novel technologies to address them. Each chapter in this dissertation explores some aspect of security or privacy in the medical space. We present tools to automatically audit accesses in electronic medical record systems in order to proactively detect privacy violations; to automatically fingerprint network-facing protocols in order to non-invasively determine if particular devices are vulnerable to known attacks; and to authenticate healthcare providers to medical devices without a need for a password in a way that protects against all known attacks present in radio-based authentication technologies. We also present an extension to the widely-used beacon protocol in order to add security in the face of active attackers; and we demonstrate an overhead-free solution to protect embedded medical devices against previously unpreventable attacks that evade existing control- flow integrity enforcement techniques by leveraging insecure built-in features in order to maliciously exploit configuration vulnerabilities in devices
    corecore