16 research outputs found

    Who Needs Crossings? Hardness of Plane Graph Rigidity

    Get PDF
    We exactly settle the complexity of graph realization, graph rigidity, and graph global rigidity as applied to three types of graphs: "globally noncrossing" graphs, which avoid crossings in all of their configurations; matchstick graphs, with unit-length edges and where only noncrossing configurations are considered; and unrestricted graphs (crossings allowed) with unit edge lengths (or in the global rigidity case, edge lengths in {1,2}). We show that all nine of these questions are complete for the class Exists-R, defined by the Existential Theory of the Reals, or its complement Forall-R; in particular, each problem is (co)NP-hard. One of these nine results - that realization of unit-distance graphs is Exists-R-complete - was shown previously by Schaefer (2013), but the other eight are new. We strengthen several prior results. Matchstick graph realization was known to be NP-hard (Eades & Wormald 1990, or Cabello et al. 2007), but its membership in NP remained open; we show it is complete for the (possibly) larger class Exists-R. Global rigidity of graphs with edge lengths in {1,2} was known to be coNP-hard (Saxe 1979); we show it is Forall-R-complete. The majority of the paper is devoted to proving an analog of Kempe\u27s Universality Theorem - informally, "there is a linkage to sign your name" - for globally noncrossing linkages. In particular, we show that any polynomial curve phi(x,y)=0 can be traced by a noncrossing linkage, settling an open problem from 2004. More generally, we show that the nontrivial regions in the plane that may be traced by a noncrossing linkage are precisely the compact semialgebraic regions. Thus, no drawing power is lost by restricting to noncrossing linkages. We prove analogous results for matchstick linkages and unit-distance linkages as well

    A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

    Get PDF
    Given a closed simple polygon P, we say two points p,q see each other if the segment seg(p,q) is fully contained in P. The art gallery problem seeks a minimum size set G ? P of guards that sees P completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods. As the art gallery problem is ? ?-complete, it seems unlikely to avoid algebraic methods, for any exact algorithm, without additional assumptions. In this paper, we introduce the notion of vision-stability. In order to describe vision-stability consider an enhanced guard that can see "around the corner" by an angle of ? or a diminished guard whose vision is by an angle of ? "blocked" by reflex vertices. A polygon P has vision-stability ? if the optimal number of enhanced guards to guard P is the same as the optimal number of diminished guards to guard P. We will argue that most relevant polygons are vision-stable. We describe a one-shot vision-stable algorithm that computes an optimal guard set for vision-stable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision-stable polygon. We implemented an iterative vision-stable algorithm and show its practical performance is slower, but comparable with other state-of-the-art algorithms. The practical implementation can be found at: https://github.com/simonheng/AGPIterative. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord c of a polygon, we denote by n(c) the number of vertices visible from c. The chord-visibility width (cw(P)) of a polygon is the maximum n(c) over all possible chords c. The set of vision-stable polygons admit an FPT algorithm when parameterized by the chord-visibility width. Furthermore, the one-shot algorithm runs in FPT time when parameterized by the number of reflex vertices

    Geometric Embeddability of Complexes Is ??-Complete

    Get PDF
    We show that the decision problem of determining whether a given (abstract simplicial) k-complex has a geometric embedding in ?^d is complete for the Existential Theory of the Reals for all d ? 3 and k ? {d-1,d}. Consequently, the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution and other important problems from various fields related to packing, Nash equilibria, minimum convex covers, the Art Gallery Problem, continuous constraint satisfaction problems, and training neural networks. Moreover, this implies NP-hardness and constitutes the first hardness result for the algorithmic problem of geometric embedding (abstract simplicial) complexes. This complements recent breakthroughs for the computational complexity of piece-wise linear embeddability

    Computing Exact Solutions of Consensus Halving and the Borsuk-Ulam Theorem

    Get PDF
    We study the problem of finding an exact solution to the consensus halving problem. While recent work has shown that the approximate version of this problem is PPA-complete, we show that the exact version is much harder. Specifically, finding a solution with nn cuts is FIXP-hard, and deciding whether there exists a solution with fewer than nn cuts is ETR-complete. We also give a QPTAS for the case where each agent's valuation is a polynomial. Along the way, we define a new complexity class BU, which captures all problems that can be reduced to solving an instance of the Borsuk-Ulam problem exactly. We show that FIXP ⊆\subseteq BU ⊆\subseteq TFETR and that LinearBU == PPA, where LinearBU is the subclass of BU in which the Borsuk-Ulam instance is specified by a linear arithmetic circuit

    Geometric Embeddability of Complexes Is ∃R-Complete

    Get PDF
    We show that the decision problem of determining whether a given (abstract simplicial) k-complex has a geometric embedding in Rd is complete for the Existential Theory of the Reals for all d ≥ 3 and k ∈ {d− 1, d}. Consequently, the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution and other important problems from various fields related to packing, Nash equilibria, minimum convex covers, the Art Gallery Problem, continuous constraint satisfaction problems, and training neural networks. Moreover, this implies NP-hardness and constitutes the first hardness result for the algorithmic problem of geometric embedding (abstract simplicial) complexes. This complements recent breakthroughs for the computational complexity of piece-wise linear embeddability

    The Complexity of the Hausdorff Distance

    Get PDF
    We investigate the computational complexity of computing the Hausdorff distance. Specifically, we show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets is bounded by a given threshold is complete for the complexity class ∀∃

    Enumerating grid layouts of graphs

    Get PDF
    We study algorithms that generate layouts of graphs with n vertices in a square grid with ν points, where adjacent vertices in the graph are also close in the grid. The problem is motivated by graph drawing and factory layout planning. In the latter application, vertices represent machines, and edges join machines that should be placed next to each other. Graphs admitting a grid layout where all edges have unit length are known as partial grid graphs. Their recognition is NP-hard already in very restricted cases. However, the moderate number of machines in practical instances suggests the use of exact algorithms that may even enumerate the possible layouts to choose from. We start with an elementary nO(√n)\ua0time algorithm, but then we argue that even simpler exponential branching algorithms are more usable for practical sizes n, although being asymptotically worse. One algorithm interpolates between obvious O∗(3n) time and O∗(4ν) time for graphs with many small connected components. It can be modified in order to accommodate also a limited number of edges that can exceed unit length. Next we show that connected graphs have at most 2.9241n\ua0grid layouts that can also be efficiently enumerated. An O∗(2.6458n) time branching algorithm solves the recognition problem, or yields a succinct enumeration of layouts with some surcharge on the time bound. In terms of the grid size we get a slightly better O∗(2.6208ν) time bound. Moreover, if we can identify a subgraph that is rigid, i.e., admits only one layout up to congruence, then all possible layouts of the entire graph are extensions of this unique layout, such that the combinatorial explosion is then confined to the rest of the graph. Therefore we also propose heuristic methods for finding certain types of large rigid subgraphs. The formulations of these results is more technical, however, the proposed method iteratively generates certain rigid subgraphs from smaller ones

    Realizability of Free Spaces of Curves

    Full text link
    The free space diagram is a popular tool to compute the well-known Fr\'echet distance. As the Fr\'echet distance is used in many different fields, many variants have been established to cover the specific needs of these applications. Often, the question arises whether a certain pattern in the free space diagram is "realizable", i.e., whether there exists a pair of polygonal chains whose free space diagram corresponds to it. The answer to this question may help in deciding the computational complexity of these distance measures, as well as allowing to design more efficient algorithms for restricted input classes that avoid certain free space patterns. Therefore, we study the inverse problem: Given a potential free space diagram, do there exist curves that generate this diagram? Our problem of interest is closely tied to the classic Distance Geometry problem. We settle the complexity of Distance Geometry in R>2\mathbb{R}^{> 2}, showing ∃R\exists\mathbb{R}-hardness. We use this to show that for curves in R≥2\mathbb{R}^{\ge 2}, the realizability problem is ∃R\exists\mathbb{R}-complete, both for continuous and for discrete Fr\'echet distance. We prove that the continuous case in R1\mathbb{R}^1 is only weakly NP-hard, and we provide a pseudo-polynomial time algorithm and show that it is fixed-parameter tractable. Interestingly, for the discrete case in R1\mathbb{R}^1, we show that the problem becomes solvable in polynomial time.Comment: 26 pages, 12 figures, 1 table, International Symposium on Algorithms And Computations (ISAAC 2023

    The Complexity of Drawing a Graph in a Polygonal Region

    Get PDF
    We prove that the following problem is complete for the existential theory of the reals: Given a planar graph and a polygonal region, with some vertices of the graph assigned to points on the boundary of the region, place the remaining vertices to create a planar straight-line drawing of the graph inside the region. This establishes a wider context for the NP-hardness result by Patrignani on extending partial planar graph drawings. Our result is one of the first showing that a problem of drawing planar graphs with straight-line edges is hard for the existential theory of the reals. The complexity of the problem is open in the case of a simply connected region. We also show that, even for integer input coordinates, it is possible that drawing a graph in a polygonal region requires some vertices to be placed at irrational coordinates. By contrast, the coordinates are known to have bounded bit complexity for the special case of a convex region, or for drawing a path in any polygonal region. In addition, we prove a Mnëv-type universality result—loosely speaking, that the solution spaces of instances of our graph drawing problem are equivalent, in a topological and algebraic sense, to bounded algebraic varieties
    corecore