15 research outputs found

    Bridge the Gap Between VQA and Human Behavior on Omnidirectional Video: A Large-Scale Dataset and a Deep Learning Model

    Full text link
    Omnidirectional video enables spherical stimuli with the 360×180∘360 \times 180^ \circ viewing range. Meanwhile, only the viewport region of omnidirectional video can be seen by the observer through head movement (HM), and an even smaller region within the viewport can be clearly perceived through eye movement (EM). Thus, the subjective quality of omnidirectional video may be correlated with HM and EM of human behavior. To fill in the gap between subjective quality and human behavior, this paper proposes a large-scale visual quality assessment (VQA) dataset of omnidirectional video, called VQA-OV, which collects 60 reference sequences and 540 impaired sequences. Our VQA-OV dataset provides not only the subjective quality scores of sequences but also the HM and EM data of subjects. By mining our dataset, we find that the subjective quality of omnidirectional video is indeed related to HM and EM. Hence, we develop a deep learning model, which embeds HM and EM, for objective VQA on omnidirectional video. Experimental results show that our model significantly improves the state-of-the-art performance of VQA on omnidirectional video.Comment: Accepted by ACM MM 201

    Human-centric quality management of immersive multimedia applications

    Get PDF
    Augmented Reality (AR) and Virtual Reality (VR) multimodal systems are the latest trend within the field of multimedia. As they emulate the senses by means of omni-directional visuals, 360 degrees sound, motion tracking and touch simulation, they are able to create a strong feeling of presence and interaction with the virtual environment. These experiences can be applied for virtual training (Industry 4.0), tele-surgery (healthcare) or remote learning (education). However, given the strong time and task sensitiveness of these applications, it is of great importance to sustain the end-user quality, i.e. the Quality-of-Experience (QoE), at all times. Lack of synchronization and quality degradation need to be reduced to a minimum to avoid feelings of cybersickness or loss of immersiveness and concentration. This means that there is a need to shift the quality management from system-centered performance metrics towards a more human, QoE-centered approach. However, this requires for novel techniques in the three areas of the QoE-management loop (monitoring, modelling and control). This position paper identifies open areas of research to fully enable human-centric driven management of immersive multimedia. To this extent, four main dimensions are put forward: (1) Task and well-being driven subjective assessment; (2) Real-time QoE modelling; (3) Accurate viewport prediction; (4) Machine Learning (ML)-based quality optimization and content recreation. This paper discusses the state-of-the-art, and provides with possible solutions to tackle the open challenges

    Exploring the impact of 360° movie cuts in users' attention

    Get PDF
    Virtual Reality (VR) has grown since the first devices for personal use became available on the market. However, the production of cinematographic content in this new medium is still in an early exploratory phase. The main reason is that cinematographic language in VR is still under development, and we still need to learn how to tell stories effectively. A key element in traditional film editing is the use of different cutting techniques, in order to transition seamlessly from one sequence to another. A fundamental aspect of these techniques is the placement and control over the camera. However, VR content creators do not have full control of the camera. Instead, users in VR can freely explore the 360° of the scene around them, which potentially leads to very different experiences. While this is desirable in certain applications such as VR games, it may hinder the experience in narrative VR. In this work, we perform a systematic analysis of users'' viewing behavior across cut boundaries while watching professionally edited, narrative 360° videos. We extend previous metrics for quantifying user behavior in order to support more complex and realistic footage, and we introduce two new metrics that allow us to measure users'' exploration in a variety of different complex scenarios. From this analysis, (i) we confirm that previous insights derived for simple content hold for professionally edited content, and (ii) we derive new insights that could potentially influence VR content creation, informing creators about the impact of different cuts in the audience's behavior

    Stereoscopic Omnidirectional Image Quality Assessment Based on Predictive Coding Theory

    Full text link
    Objective quality assessment of stereoscopic omnidirectional images is a challenging problem since it is influenced by multiple aspects such as projection deformation, field of view (FoV) range, binocular vision, visual comfort, etc. Existing studies show that classic 2D or 3D image quality assessment (IQA) metrics are not able to perform well for stereoscopic omnidirectional images. However, very few research works have focused on evaluating the perceptual visual quality of omnidirectional images, especially for stereoscopic omnidirectional images. In this paper, based on the predictive coding theory of the human vision system (HVS), we propose a stereoscopic omnidirectional image quality evaluator (SOIQE) to cope with the characteristics of 3D 360-degree images. Two modules are involved in SOIQE: predictive coding theory based binocular rivalry module and multi-view fusion module. In the binocular rivalry module, we introduce predictive coding theory to simulate the competition between high-level patterns and calculate the similarity and rivalry dominance to obtain the quality scores of viewport images. Moreover, we develop the multi-view fusion module to aggregate the quality scores of viewport images with the help of both content weight and location weight. The proposed SOIQE is a parametric model without necessary of regression learning, which ensures its interpretability and generalization performance. Experimental results on our published stereoscopic omnidirectional image quality assessment database (SOLID) demonstrate that our proposed SOIQE method outperforms state-of-the-art metrics. Furthermore, we also verify the effectiveness of each proposed module on both public stereoscopic image datasets and panoramic image datasets
    corecore