553 research outputs found

    Generalized Additive Modeling For Multivariate Distributions

    Get PDF
    In this thesis, we develop tools to study the influence of predictors on multivariate distributions. We tackle the issue of conditional dependence modeling using generalized additive models, a natural extension of linear and generalized linear models allowing for smooth functions of the covariates. Compared to existing methods, the framework that we develop has two main advantages. First, it is completely flexible, in the sense that the dependence structure can vary with an arbitrary set of covariates in a parametric, nonparametric or semiparametric way. Second, it is both quick and numerically stable, which means that it is suitable for exploratory data analysis and stepwise model building. Starting from the bivariate case, we extend our framework to pair-copula constructions, and open new possibilities for further applied and methodological work. Our regression-like theory of the dependence, being built on conditional copulas and generalized additive models, is at the same time theoretically sound and practically useful

    Coupled Depth Learning

    Full text link
    In this paper we propose a method for estimating depth from a single image using a coarse to fine approach. We argue that modeling the fine depth details is easier after a coarse depth map has been computed. We express a global (coarse) depth map of an image as a linear combination of a depth basis learned from training examples. The depth basis captures spatial and statistical regularities and reduces the problem of global depth estimation to the task of predicting the input-specific coefficients in the linear combination. This is formulated as a regression problem from a holistic representation of the image. Crucially, the depth basis and the regression function are {\bf coupled} and jointly optimized by our learning scheme. We demonstrate that this results in a significant improvement in accuracy compared to direct regression of depth pixel values or approaches learning the depth basis disjointly from the regression function. The global depth estimate is then used as a guidance by a local refinement method that introduces depth details that were not captured at the global level. Experiments on the NYUv2 and KITTI datasets show that our method outperforms the existing state-of-the-art at a considerably lower computational cost for both training and testing.Comment: 10 pages, 3 Figures, 4 Tables with quantitative evaluation

    A Winnow-Based Approach to Context-Sensitive Spelling Correction

    Full text link
    A large class of machine-learning problems in natural language require the characterization of linguistic context. Two characteristic properties of such problems are that their feature space is of very high dimensionality, and their target concepts refer to only a small subset of the features in the space. Under such conditions, multiplicative weight-update algorithms such as Winnow have been shown to have exceptionally good theoretical properties. We present an algorithm combining variants of Winnow and weighted-majority voting, and apply it to a problem in the aforementioned class: context-sensitive spelling correction. This is the task of fixing spelling errors that happen to result in valid words, such as substituting "to" for "too", "casual" for "causal", etc. We evaluate our algorithm, WinSpell, by comparing it against BaySpell, a statistics-based method representing the state of the art for this task. We find: (1) When run with a full (unpruned) set of features, WinSpell achieves accuracies significantly higher than BaySpell was able to achieve in either the pruned or unpruned condition; (2) When compared with other systems in the literature, WinSpell exhibits the highest performance; (3) The primary reason that WinSpell outperforms BaySpell is that WinSpell learns a better linear separator; (4) When run on a test set drawn from a different corpus than the training set was drawn from, WinSpell is better able than BaySpell to adapt, using a strategy we will present that combines supervised learning on the training set with unsupervised learning on the (noisy) test set.Comment: To appear in Machine Learning, Special Issue on Natural Language Learning, 1999. 25 page

    Metal based additive layer manufacturing: variations, correlations and process control

    Get PDF
    Additive layer manufacturing is emerging as the next generation in part manufacture. It is being adopted by aerospace, tool making, dental and medical industries to produce and develop new conceptual designs and products due to its speed and flexibility. It has been noted that parts produced using additive layer manufacturing are not to a consistent quality. Variations have been recorded showing inadequate control over dimensional tolerances, surface roughness, porosity, and other defects in built parts. It is, however, possible to control these variables using real-time processes that currently lack adequate process measurement methods. This paper identifies process variation and lists parameters currently being recorded during a commercial additive manufacture (AM) machine build process. Furthermore, it examines correlations between manufactured parts and real time build variations

    Material extrusion-based additive manufacturing: G-code and firmware attacks and Defense frameworks

    Get PDF
    Additive Manufacturing (AM) refers to a group of manufacturing processes that create physical objects by sequentially depositing thin layers. AM enables highly customized production with minimal material wastage, rapid and inexpensive prototyping, and the production of complex assemblies as single parts in smaller production facilities. These features make AM an essential component of Industry 4.0 or Smart Manufacturing. It is now used to print functional components for aircraft, rocket engines, automobiles, medical implants, and more. However, the increased popularity of AM also raises concerns about cybersecurity. Researchers have demonstrated strength degradation attacks on printed objects by injecting cavities in the design file which cause premature failure and catastrophic consequences such as failure of the attacked propeller of a drone during flight. Since a 3D printer is a cyber-physical system that connects the cyber and physical domains in a single process chain, it has a different set of vulnerabilities and security requirements compared to a conventional IT setup. My Ph.D. research focuses on the cybersecurity of one of the most popular AM processes, Material Extrusion or Fused Filament Fabrication (FFF). Although previous research has investigated attacks on printed objects by altering the design, these attacks often leave a larger footprint and are easier to detect. To address this limitation, I have focused on attacks at the intermediate stage of slicing through minimal manipulations at the individual sub-process level. By doing so, I have demonstrated that it is possible to implant subtle defects in printed parts that can evade detection schemes and bypass many quality assessment checks. In addition to exploring attacks through design files or network layer manipulations, I have also proposed firmware attacks that cause damage to the printed parts, the printer, and the printing facility. To detect sabotage attacks on FFF process, I have developed an attack detection framework that analyzes the cyber and physical domain state of the printing process and detects anomalies using a series of estimation and comparison algorithms in time, space, and frequency domains. An implementation case study confirms that cyber-physical security frameworks are an effective solution against sophisticated sabotage attacks. The increasing use of 3D printing technology to produce functional components underscores the growing importance of compliance and regulations in ensuring their quality and safety. Currently, there are no standards or best practices to guide a user in making a critical printing setup forensically ready. Therefore, I am proposing a novel forensic readiness framework for material extrusion-based 3D printing that will guide standards organizations in formulating compliance criteria for important 3D printing setups. I am optimistic that my offensive and defensive research endeavors presented in this thesis will serve as a valuable resource for researchers and industry practitioners in creating a safer and more secure future for additive manufacturing

    Rotorcraft digital advanced avionics system (RODAAS) functional description

    Get PDF
    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented
    corecore