197 research outputs found

    When Backpressure Meets Predictive Scheduling

    Full text link
    Motivated by the increasing popularity of learning and predicting human user behavior in communication and computing systems, in this paper, we investigate the fundamental benefit of predictive scheduling, i.e., predicting and pre-serving arrivals, in controlled queueing systems. Based on a lookahead window prediction model, we first establish a novel equivalence between the predictive queueing system with a \emph{fully-efficient} scheduling scheme and an equivalent queueing system without prediction. This connection allows us to analytically demonstrate that predictive scheduling necessarily improves system delay performance and can drive it to zero with increasing prediction power. We then propose the \textsf{Predictive Backpressure (PBP)} algorithm for achieving optimal utility performance in such predictive systems. \textsf{PBP} efficiently incorporates prediction into stochastic system control and avoids the great complication due to the exponential state space growth in the prediction window size. We show that \textsf{PBP} can achieve a utility performance that is within O(ϵ)O(\epsilon) of the optimal, for any ϵ>0\epsilon>0, while guaranteeing that the system delay distribution is a \emph{shifted-to-the-left} version of that under the original Backpressure algorithm. Hence, the average packet delay under \textsf{PBP} is strictly better than that under Backpressure, and vanishes with increasing prediction window size. This implies that the resulting utility-delay tradeoff with predictive scheduling beats the known optimal [O(ϵ),O(log(1/ϵ))][O(\epsilon), O(\log(1/\epsilon))] tradeoff for systems without prediction

    Learning-aided Stochastic Network Optimization with Imperfect State Prediction

    Full text link
    We investigate the problem of stochastic network optimization in the presence of imperfect state prediction and non-stationarity. Based on a novel distribution-accuracy curve prediction model, we develop the predictive learning-aided control (PLC) algorithm, which jointly utilizes historic and predicted network state information for decision making. PLC is an online algorithm that requires zero a-prior system statistical information, and consists of three key components, namely sequential distribution estimation and change detection, dual learning, and online queue-based control. Specifically, we show that PLC simultaneously achieves good long-term performance, short-term queue size reduction, accurate change detection, and fast algorithm convergence. In particular, for stationary networks, PLC achieves a near-optimal [O(ϵ)[O(\epsilon), O(log(1/ϵ)2)]O(\log(1/\epsilon)^2)] utility-delay tradeoff. For non-stationary networks, \plc{} obtains an [O(ϵ),O(log2(1/ϵ)[O(\epsilon), O(\log^2(1/\epsilon) +min(ϵc/21,ew/ϵ))]+ \min(\epsilon^{c/2-1}, e_w/\epsilon))] utility-backlog tradeoff for distributions that last Θ(max(ϵc,ew2)ϵ1+a)\Theta(\frac{\max(\epsilon^{-c}, e_w^{-2})}{\epsilon^{1+a}}) time, where ewe_w is the prediction accuracy and a=Θ(1)>0a=\Theta(1)>0 is a constant (the Backpressue algorithm \cite{neelynowbook} requires an O(ϵ2)O(\epsilon^{-2}) length for the same utility performance with a larger backlog). Moreover, PLC detects distribution change O(w)O(w) slots faster with high probability (ww is the prediction size) and achieves an O(min(ϵ1+c/2,ew/ϵ)+log2(1/ϵ))O(\min(\epsilon^{-1+c/2}, e_w/\epsilon)+\log^2(1/\epsilon)) convergence time. Our results demonstrate that state prediction (even imperfect) can help (i) achieve faster detection and convergence, and (ii) obtain better utility-delay tradeoffs

    Timely-Throughput Optimal Scheduling with Prediction

    Full text link
    Motivated by the increasing importance of providing delay-guaranteed services in general computing and communication systems, and the recent wide adoption of learning and prediction in network control, in this work, we consider a general stochastic single-server multi-user system and investigate the fundamental benefit of predictive scheduling in improving timely-throughput, being the rate of packets that are delivered to destinations before their deadlines. By adopting an error rate-based prediction model, we first derive a Markov decision process (MDP) solution to optimize the timely-throughput objective subject to an average resource consumption constraint. Based on a packet-level decomposition of the MDP, we explicitly characterize the optimal scheduling policy and rigorously quantify the timely-throughput improvement due to predictive-service, which scales as Θ(p[C1(aamaxq)pqρτ+C2(11p)](1ρD))\Theta(p\left[C_{1}\frac{(a-a_{\max}q)}{p-q}\rho^{\tau}+C_{2}(1-\frac{1}{p})\right](1-\rho^{D})), where a,amax,ρ(0,1),C1>0,C20a, a_{\max}, \rho\in(0, 1), C_1>0, C_2\ge0 are constants, pp is the true-positive rate in prediction, qq is the false-negative rate, τ\tau is the packet deadline and DD is the prediction window size. We also conduct extensive simulations to validate our theoretical findings. Our results provide novel insights into how prediction and system parameters impact performance and provide useful guidelines for designing predictive low-latency control algorithms.Comment: 14 pages, 7 figure

    Predictive Congestion Control MAC Protocol for Wireless Sensor Networks

    Get PDF
    Available congestion control schemes, for example transport control protocol (TCP), when applied to wireless networks results in a large number of packet drops, unfairness with a significant amount of wasted energy due to retransmissions. To fully utilize the hop by hop feedback information, a suite of novel, decentralized, predictive congestion control schemes are proposed for wireless sensor networks in concert with distributed power control (DPC). Besides providing energy efficient solution, embedded channel estimator in DPC predicts the channel quality. By using the channel quality and node queue utilizations, the onset of network congestion is predicted and congestion control is initiated. Stability of the hop by hop congestion control is demonstrated by using a Lyapunov-based approach. Simulation results show that the proposed schemes result in fewer dropped packets than a network without the hop-by-hop congestion control, better fairness index and network efficiency, higher aggregate throughput, and smaller end-to-end delays over the other available schemes like IEEE 802.11 protocol

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces
    corecore