7,897 research outputs found

    Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    Get PDF
    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Colour constancy in simple and complex scenes

    Get PDF
    PhD ThesisColour constancy is defined as the ability to perceive the surface colours of objects within scenes as approximately constant through changes in scene illumination. Colour constancy in real life functions so seamlessly that most people do not realise that the colour of the light emanating from an object can change markedly throughout the day. Constancy measurements made in simple scenes constructed from flat coloured patches do not produce constancy of this high degree. The question that must be asked is: what are the features of everyday scenes that improve constancy? A novel technique is presented for testing colour constancy. Results are presented showing measurements of constancy in simple and complex scenes. More specifically, matching experiments are performed for patches against uniform and multi-patch backgrounds, the latter of which provide colour contrast. Objects created by the addition of shape and 3-D shading information are also matched against backgrounds consisting of matte reflecting patches. In the final set of experiments observers match detailed depictions of objects - rich in chromatic contrast, shading, mutual illumination and other real life features - within depictions of real life scenes. The results show similar performance across the conditions that contain chromatic contrast, although some uncertainty still remains as to whether the results are indicative of human colour constancy performance or to sensory match capabilities. An interesting division exists between patch matches performed against uniform and multi-patch backgrounds that is manifested as a shift in CIE xy space. A simple model of early chromatic processes is proposed and examined in the context of the results

    Facial Expression Recognition

    Get PDF
    • …
    corecore