27 research outputs found

    Training dynamics of neural language models

    Get PDF
    Why do artificial neural networks model language so well? We claim that in order to answer this question and understand the biases that lead to such high performing language models---and all models that handle language---we must analyze the training process. For decades, linguists have used the tools of developmental linguistics to study human bias towards linguistic structure. Similarly, we wish to consider a neural network's training dynamics, i.e., the analysis of training in practice and the study of why our optimization methods work when applied. This framing shows us how structural patterns and linguistic properties are gradually built up, revealing more about why LSTM models learn so effectively on language data. To explore these questions, we might be tempted to appropriate methods from developmental linguistics, but we do not wish to make cognitive claims, so we avoid analogizing between human and artificial language learners. We instead use mathematical tools designed for investigating language model training dynamics. These tools can take advantage of crucial differences between child development and model training: we have access to activations, weights, and gradients in a learning model, and can manipulate learning behavior directly or by perturbing inputs. While most research in training dynamics has focused on vision tasks, language offers direct annotation of its well-documented and intuitive latent hierarchical structures (e.g., syntax and semantics) and is therefore an ideal domain for exploring the effect of training dynamics on the representation of such structure. Focusing on LSTM models, we investigate the natural sparsity of gradients and activations, finding that word representations are focused on just a few neurons late in training. Similarity analysis reveals how word embeddings learned for different tasks are highly similar at the beginning of training, but gradually become task-specific. Using synthetic data and measuring feature interactions, we also discover that hierarchical representations in LSTMs may be a result of their learning strategy: they tend to build new trees out of familiar phrases, by mingling together the meaning of constituents so they depend on each other. These discoveries constitute just a few possible explanations for how LSTMs learn generalized language representations, with further theories on more architectures to be uncovered by the growing field of NLP training dynamics

    On the integration of conceptual hierarchies with deep learning for explainable open-domain question answering

    Get PDF
    Question Answering, with its potential to make human-computer interactions more intuitive, has had a revival in recent years with the influx of deep learning methods into natural language processing and the simultaneous adoption of personal assistants such as Siri, Google Now, and Alexa. Unfortunately, Question Classification, an essential element of question answering, which classifies questions based on the class of the expected answer had been overlooked. Although the task of question classification was explicitly developed for use in question answering systems, the more advanced task of question classification, which classifies questions into between fifty and a hundred question classes, had developed into independent tasks with no application in question answering. The work presented in this thesis bridges this gap by making use of fine-grained question classification for answer selection, arguably the most challenging subtask of question answering, and hence the defacto standard of measure of its performance on question answering. The use of question classification in a downstream task required significant improvement to question classification, which was achieved in this work by integrating linguistic information and deep learning through what we call Types, a novel method of representing Concepts. Our work on a purely rule-based system for fine-grained Question Classification using Types achieved an accuracy of 97.2%, close to a 6 point improvement over the previous state of the art and has remained state of the art in question classification for over two years. The integration of these question classes and a deep learning model for Answer Selection resulted in MRR and MAP scores which outperform the current state of the art by between 3 and 5 points on both versions of a standard test set

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains

    Deep Colorization for Facial Gender Recognition

    Get PDF
    corecore