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Abstract

Question Answering, with its potential to make human-computer interactions more intuitive,
has had a revival in recent years with the influx of deep learning methods into natural
language processing and the simultaneous adoption of personal assistants such as Siri,
Google Now, and Alexa. Unfortunately, Question Classification, an essential element of
question answering, which classifies questions based on the class of the expected answer had
been overlooked. Although the task of question classification was explicitly developed for
use in question answering systems, the more advanced task of question classification, which
classifies questions into between fifty and a hundred question classes, had developed into
independent tasks with no application in question answering.

The work presented in this thesis bridges this gap by making use of fine-grained question
classification for answer selection, arguably the most challenging subtask of question answer-
ing, and hence the defacto standard of measure of its performance on question answering.
The use of question classification in a downstream task required significant improvement to
question classification, which was achieved in this work by integrating linguistic information
and deep learning through what we call Types, a novel method of representing Concepts.

Our work on a purely rule-based system for fine-grained Question Classification using
Types achieved an accuracy of 97.2%, close to a 6 point improvement over the previous state
of the art and has remained state of the art in question classification for over two years. The
integration of these question classes and a deep learning model for Answer Selection resulted
in MRR and MAP scores which outperform the current state of the art by between 3 and 5
points on both versions of a standard test set.
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1
Introduction and Motivation

The indexed surface web is estimated to contain around 4.68 billion pages (de Kunder,

2008, 2015). Admittedly the vast majority of this information might have little relevance

to a particular individual, however, given that just the popular AI journals publish over five

thousand articles a year (SCImago, 2016), it is safe to assume that individuals have access to

vastly more information than they can sift through.

Existing solutions to this information overload range from search engines to (human)

personal assistants. With no indications that this explosive growth in information is likely to

diminish, the need for an alternate solution is more urgent than ever before (Etzioni, 2011).

1.1 The Current Limitations of Web Search

Web Search, in its current form, is tremendously useful in specific contexts. Finding infor-

mation on the web was initially accomplished by use of directories such as Yahoo! As the

number of web pages grew, this soon became impossible, and search engines became the pre-

ferred solution. Web search continues to be good at providing a list of web pages that contain

specific information. Until recently, searching for “pizza delivery” did not provide one with a

list of pizza outlets that are currently open and deliver to the user’s location (D’Assisi, 2016).

This has radically changed in the last couple of years with local and geotargeted listings

1



1.2 Beyond Search

becoming the norm. Similarly, search engines now provide more emphasis on recency and

context rather than just relevance.

Despite these advances, searching for information on the web continues to be a sig-

nificantly different experience from asking someone for the same information. Bridging

this gap in experience has the potential to save users an incredible amount of time while

simultaneously increasing the number of people interacting with content. A more intuitive

way of exploring information can also help businesses augment their support teams so saving

money while providing 24-hour support.

1.2 Beyond Search

Several competing approaches have the potential to provide a more exciting and intuitive

way of interacting with web-data than search does. The most prominent amongst them is

Chatbots (Dale, 2016). Chatbots provide a method of interaction that is similar to everyday

conversations. While these systems can provide a more intuitive way of interacting with

web-information, in the context of accessing information, it is reasonable to assume that the

majority of interactions between users and chatbots are in the form of questions from users

that are to be answered by the chatbot. However, chatbots additionally require techniques

of extending conversations with users, motivating further interaction and other elements of

human-human talk. To avoid these additional research requirements of Chatbots, this thesis

focuses on Question Answering, which is arguably a prerequisite for effective chatbots. This

thesis describes experimentation with and methods of improving Question Answering (QA)

systems.

The significant improvement in the accuracy of QA achieved through methods described

in this thesis relies on the use of linguistic and cognitive information that had, until now,

been thrown by the wayside due to over-reliance on pure machine learning methods. We

hope that these improved results show that linguistic analysis continues to play an important

2



1.3 The Shift to Statistical Methods in NLP

and impactful role in NLP in general and QA in particular, and will, even if in a small way,

reverse the trend of exclusively using deep learning methods.

1.3 The Shift to Statistical Methods in NLP

In December 2013 Tomas Mikolov presented the now famous paper “Distributed representa-

tions of words and phrases and their compositionality” (Mikolov et al., 2013a). The use of

context to represent words was not new (Firth, 1957), and neither was the use of vectors to

represent the meaning of words (Bengio et al., 2003; Levy et al., 2015). This work, however,

additionally described an analogy task and the resultant embeddings, captivatingly called

‘word2vec’ which were publicly released by Google 1. The technical advantage of word2vec

is speed. However, it was the ease of availability and the media attention that drove adoption.

Google released pre-trained vectors, trained on a part of the Google News dataset, containing

about 100 billion words and very soon word vectors were being used in NLP tasks from

Semantic Text Similarity (Section 2.2) to Answer Selection (Chapter 5).

Two years later, at the same conference, Neural Information Processing Systems, re-

searchers from Oxford and DeepMind, by then a subsidiary of Google, presented a paper

titled “Teaching Machines to Read and Comprehend” (Hermann et al., 2015), in which

they introduced the idea of “attention”, from machine vision, to vastly improve accuracy

in reading comprehension. Their analysis included results using traditional models such as

frame-semantics, exploitation of word embeddings, and deep learning models with attention.

As can be seen from Table 1.1, a reproduction of Hermann et al. (2015)’s results, deep

learning models performed vastly better than the other two models. These works, in addition

to the deep learning methods not needing annotation, led research in nearly every subfield of

NLP to quickly shift to deep learning models that used pre-trained word embeddings as input

and consisted of CNNs, RNNs, LSTMs, several layers, and attention. This not only led to

1https://code.google.com/archive/p/word2vec/

3



1.4 Deep Learning - The Problems

Validation Test

Maximum frequency 30.5 33.2

Exclusive frequency 36.6 39.3

Frame-semantic model 36.3 40.2

Word distance model 50.5 50.9

Deep LSTM Reader 55.0 57.0

Uniform Reader 39.0 39.4

Attentive Reader 61.6 63.0

Impatient Reader 61.8 63.8

Table 1.1 Accuracy of Reading Comprehension of models and benchmarks on the CNN
dataset (Hermann et al., 2015)

the lack of exploitation of existing research into linguistics but also resulted in researchers

being faced with shortcomings inherent to Learning models.

1.4 Deep Learning - The Problems

The significant advantages provided by purely deep learning methods, including their ef-

fectiveness (Pereira et al., 2009), come not without their drawbacks. The ability of deep

neural networks to approximate extremely complicated functions has also meant that error

analysis has become a near impossibility. The popularity of deep learning has translated

into its ubiquitous usage across domains, including those that require rigid error analysis,

such as medicine and autonomous cars and recent projects have started to emphasise the

need for these models to be explainable (Gunning, 2018; Wierzynski, 2018). The problem of

neural networks generating bizarre results is exemplified by Google Translate as shown in

Figure 1.1 1. A similar difficulty in performing an error analysis is explored in the context of

a different task in Section 2.1.6.
1Source: https://motherboard.vice.com/en_us/article/j5npeg/why-is-google-translate-spitting-out-sinister-

religious-prophecies

4



1.5 Integrating Classical Natural Language Processing with Deep Learning

Fig. 1.1 Google Translate Acting Bizarre (2018).

Additionally, there is reason to believe that the improvements in accuracy provided by

deep learning systems are plateauing. A look at state of the art in Answer Selection 1 shows

significant improvements in accuracy between 2013 and 2016, followed by almost two years

of stagnation - until work done as part of this project improved on the state of the art in 2018.

1.5 Integrating Classical Natural Language Processing with

Deep Learning

Methods that exploit the systematic analysis of language, its semantics and syntactic structure

are referred to, especially in this work, as traditional methods in natural language processing.

These methods do make use of machine learning; however, they do not do so without

linguistic information in the way that deep learning methods do. They often rely on carefully

selected features, which are then fed into machine learning models.

The superior performance of deep learning models shifted the emphasis away from the

use of classical methods; however, this work shows that the use of traditional methods to
1https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)

5



1.6 Research Questions

engineer some features, while simultaneously making use of the implicit feature extraction

provided by deep learning models, provides a method of achieving a significant increase in

accuracy of some NLP tasks.

This break from pure machine learning methods implicitly provides the work presented

in this thesis with additional advantages, namely: a) better error analysis, and b) access

to decades of work into language structure, semantics, language learning and cognitive

processes associated with language.

1.6 Research Questions

The preceding sections have discussed the recent resurgence of deep learning techniques and

the consequent gains achieved across several NLP tasks. While most current state of the art

techniques utilise deep learning, it is not clear if this implies that traditional methods are

unable to match the achievements of deep learning methods. This leads to the first research

question explored in this work:

• Research Question 1: Has the success of deep learning methods made it impossible

to improve upon the state of art of various NLP tasks without the use of deep learning?

The answer to this question will have far reaching implications to research in NLP as

it will determine if it is worth pursuing research that does not exploit deep learning. If

traditional methods cannot achieve the performance of deep learning models, this will imply

that computational linguists are better off exploring methods of creating features for statistical

models rather than exploring the nature of language.

A related line of exploration is based on the fact that, unlike in other fields, such as vision,

the impact of deep learning on NLP has been limited1. This is not to say that deep learning

models have not had an impact on NLP tasks, but that the improvement in performance has

not been as significant as in other domains. In addition the biggest contributor to NLP has

1https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
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been the introduction of Distributed Word Embeddings rather than the exploitation of the

generalisation capabilities of deep learning models (Manning, 2015), which leads us to our

second research question:

• Research Question 2: Given that the success of deep learning methods lies in their

ability to abstract learning, and that learning abstraction is not where the gains in NLP

stem from, are there other forms of generalisation that might be more suitable to NLP?

Despite the interest in finding such an alternative, this work does not fail to recognise the

contribution and potential of deep learning models. In the four years since Manning (2015)

wrote his piece, deep learning models have continued to improve upon the state of the art in

NLP. Given this, the final line of enquiry explores the possibility of bringing together these

methods and decades of work that has gone into traditional NLP research, which leads to the

final research question:

• Research Question 3: How can features discovered through the analysis of language

and language structure be fed into deep learning models without fundamental changes

to those models?

Section 6.2 of this work’s Conclusions (Chapter 6) discusses how this work addresses

these questions and what that implies in terms of the contributions of this work.

1.7 Novel Methods and Contribution

This work has resulted in the creation of hundreds of rules that outperform all machine

learning methods for Question Classification - a task that classifies questions based on the

type of answer expected (see Section 2.4). The generation of these rules was made possible

by using the idea of concepts, which are generalisations or abstractions that allow the use of

previous experience in new situations (see Chapter 3). The resultant Question Classification

system achieved an accuracy of 97.2%, close to a 6 point improvement over the previous
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state of the art of 91.6% (Tayyar Madabushi and Lee, 2016). This system has also been made

available publicly through an API.1.

These question classes were subsequently integrated into a deep learning system for

Answer Selection, which outperformed the then state of the art by between 3 and 5 points

on both versions of a standard test set. These results were presented at COLING 2018 (Tay-

yar Madabushi et al., 2018) (see Chapter 5).

1.8 Thesis Structure

As discussed in this chapter, deep learning methods have had a tremendous impact on research

into natural language processing during the course of this project (2014 to 2018). However,

this work provides novel methods of integrating information obtained through traditional

NLP methods into deep learning to improve accuracy and simultaneously make deep learning

models more transparent.

Chapter 2 explores research related to this work, including related work in the field of

QA, the different subproblems in QA, and the approaches to these problems (Section 2.1).

The same chapter then provides an overview of work related to tasks that this work explores

such as Semantic Text Similarity (STS) (Section 2.2), Question Classification (Section 2.3)

and Answer Selection (Section 2.4).

Chapter 3 provides the theoretical foundation for the work presented in this work. It

explores the idea of Concepts, their utility, their implementation through Types before then

providing an empirical evaluation using the STS task.

Chapter 4 and Chapter 5 detail the central contributions of this work with regard to the

tasks of Question Classification and Answer Selection respectively.

Finally, Chapter 6 provides our conclusions and ideas on how the work presented in this

thesis can be extended in future projects.

1Available at http://www.harishmadabushi.com/research/questionclassification/
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2
Related Work

This Chapter explores recent research into the field of automated Question Answering. There

is significant variation in the kind of questions that various systems attempt to answer and

the methods they use to do so. This Chapter starts off by providing an overview of the topic

before providing a more in-depth analysis of specific methods related to the work presented

in this thesis, namely Question Classification and Answer Selection.

2.1 Question Answering - An Overview

Question Answering is a simple problem to define and yet has remained the focus of research

for decades (Simmons, 1965). This complexity has led to the subdivision of the problem

into several sub-problems, each of which has been addressed using a variety of methods.

An exploration of various surveys of automated QA shows that researchers do not agree

on either the criteria for classification or the classification within any given criterion. This

section provides an overview of some of the (subjectively) more interesting criteria and the

classification associated with each criterion.

Before exploring these criteria, we discuss some of the surveys on Question Answering

systems starting with the earliest by Simmons (1970). Simmons (1970) explores five Question

Answering systems that were state of the art in the late 60s, including one capable of making
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2.1 Question Answering - An Overview

geometric inferences. These early systems were limited to a subset of English and often

relied on basic template matching (Section 2.1.4) and trivial semantic distance based on

thesaurus word frequencies. The next survey into Question Answering by Androutsopoulos

et al. (1995) focused on how natural language questions can be answered using database

systems. The next survey was that by Hirschman and Gaizauskas (2001) which coincided

with their introduction of the TREC Question Answering track (Voorhees, 2001b), data from

which is still used today.

The introduction of the TREC QA track reignited interest in Question Answering which

was captured in surveys by Andrenucci and Sneiders (2005), which continued to focus on

research into converting natural language into structured data, and that by Prager (2007).

Prager (2007)’s work explored different kinds of Question Answering (i.e. factoid, list, . . . )

which we discuss in more detail in Section 2.1.2.

In line with the computer science zeitgeist at the time, research in to Question Answering

then focused on methods involving Information Retrieval, such as work by Mollá and Vicedo

(2007) and Kolomiyets and Moens (2011). Simultaneously, there was an emphasis on domain

specific Question Answering capture in the survey by Athenikos and Han (2010).

Finally, the survey by Yao (2014) explores various features which are useful in Question

Answering, a popular direction of research before the popularity of deep learning methods.

The latest available survey on Question Answering is that by Mishra and Jain (2016) which

includes an overview of deep learning techniques which we discuss in Section 2.5.

2.1.1 Domains

The specific domain that a QA system can answer questions regarding is often the most

general criterion for classification. Closed domain QA systems answer questions related

to specific domains such as medical questions (Athenikos and Han, 2010). Open domain
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QA systems, such as the one presented in this work, on the other hand, impose no such

restrictions.

The need for this distinction arose from the fact that domain-specific data often requires

domain specialisation that a generic system might not have or require. Popularly used tools,

such as pre-trained word vectors, are trained on generic text making them less effective in a

domain-specific context.

2.1.2 Types of Questions

Questions can be of different types, for example, the question ‘What is the name of the

actress who has won the most Oscars?’, requires the answer to be a fact and hence is referred

to as a factoid question. The question ‘What is the meaning of life?’ requires a longer answer

and so is called a descriptive question. Table 2.1 provides a list of typical classes of questions

and references to the subjectively more striking works associated with each.

2.1.3 Answer Generation

A QA system might either extract an answer from existing text or generate text containing

the answer. The first method is more popular as it ignores the additional task of, and

consequently the additional possibility of errors in, generating coherent and grammatically

correct sentences. The latter, more difficult method is called Generative Question answering

and requires specialised natural language generation algorithms.

Methods exploiting Answer Selection (Bian et al., 2017; Yu et al., 2014) are examples of

those that extract answers from existing text. Work by Yin et al. (2016) into neural generative

Question Answering is an example of a popular method in generative Question Answering

where the task is treated as a sequence to sequence problem that is solved using neural

networks, in a method similar to that used in machine translation.
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Type Description Related Work

Factoid
Expected answers are short,
usually a single word of
phrase.

(Iyyer et al., 2014)

List
Expected answers are a list or
a part a list. Sometimes
considered to be Factoid QA.

(Schone et al., 2005)

Yes or No

Questions require a simple
yes or no as an answer.
Sometimes considered to be
Factoid QA.

(Srihari and Li, 2000)

Multiple Choice

Multiple choice questions,
answers are one or more of
several options. Sometimes
considered to be Factoid QA.

(Jansen et al., 2016)

Descriptive Questions require detailed
explanations as answers.

(Tan et al., 2015)

Table 2.1 The Different Types of Questions.

2.1.4 Approaches to Question Answering

Each of the above kind of questions and answer generation methods is addressed using several

approaches. Some approaches are naturally better suited for certain kinds of questions;

however, the classification provided in this section ignores this and presents all possible

approaches to solving Question Answering.

Template Matching

Early QA systems (Simmons, 1970) relied on creating templates for questions and extracting

answers based on related answer templates. For example, the question “Who is the prime

minister of the United Kingdom?” can be generalised using the template who be <role> of
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<entity> (Hovy et al., 2000). Similar patterns presented by Hovy et al. (2000) are listed in

Table 2.2.

Question Question templates

Who was Johnny Mathis’ high school
track coach? who be <entity>’s <role>
Who was Lincoln’s Secretary of State?

Who was President of Turkmenistan in
1994? who be <role> of <entity>
Who is the composer of Eugene Onegin?
Who is the CEO of General Electric?

Actual answers Answer templates
Lou Vasquez, track coach of . . . and
Johnny Mathis

<person>, <role> of <entity>

Signed Saparmurad Turkmenbachy
[Niyazov], president of Turkmenistan

<person> <role-title*> of <entity>

. . . Turkmenistan’s President Saparmurad
Niyazov. . .

<entity>’s <role> <person>

. . . in Tchaikovsky’s Eugene Onegin. . . <person>’s <entity>
Mr. Jack Welch, GE chairman. . . <role-title> <person>. . . <entity> <role>

. . . Chairman John Welch said . . . GE’s
<subject>|<psv object> of related
role-verb

Table 2.2 Question and Answer Patterns (Hovy et al., 2000, p. 6)

Some templates were manually defined, like those described above, and others were

learned using large corpora including the web (Wu et al., 2005). Templates and patterns have

been used in a variety of tasks, most notably by Hearst (Hearst, 1992) for the discovery of

hyponyms. This work by Hearst was the motivation behind the template based Question

Classification system developed by the author and detailed in Chapter 4.
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Matching templates has been attempted by use of machine learning techniques by re-

searchers including Li et al. (2010), who use a semi-supervised method of matching while

Yih et al. (2013) provide a method dependent on word alignment. Several of these methods

make use of Hearst patterns.

Template based systems, often criticised for their inability to adapt to new domains or

language, have the advantage of being explainable. Chapter 4 presents a novel method of

using templates on the parse trees of questions for Question Classification, which achieved

state of the art results.

Question Classification and Answer Selection

Question Classification consists of classifying questions based on the class of the expected

answer. For example, the question “Which year did the first world war begin?” can be

classified as “Numeric Year” as the answer is a year. Answer selection is the related, yet

independent task, of selecting, from a list of sentences some of which contain the answer

to a given question and some that do not, that subset which does. As this work follows this

model, these methods are explored in greater detail in Sections 2.3 and 2.4.

Web Redundency

Work by Brill et al. (2002) showed that redundant information in web results is a powerful

signal in determining the answer to a given question. They proposed a simple method of

translating a question into a web query before then using redundant n-grams in web results

to extract the answer. They also showed that mapping the type of n-gram to the question

class improved the results dramatically, as it cut down on noise inherent to web data. Brill

et al. (2002), however, used an extremely simplistic Question Classification system. As an

example of this method, given the question “Where is the Louvre Museum located?”, they

query a web search engine with the queries “the Louvre Museum is located”, “the Louvre
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Museum is in”, “the Louvre Museum is near”, and “the Louvre Museum is”. The results

are mined for n-grams, which are pruned based on the type of the question. The results are

then tiled to combine smaller phrases into larger ones (e.g. phrases A, B, C and B, C, D are

combined to form A, B, C, D) and sorted by frequency to extract the answer.

Roussinov et al. (2005) subsequently used a similar method of exploiting redundancy

in web results for QA. Recently, Tsai et al. (2015) showed how significant improvements

in search engine technologies have significantly improved this system. They also use a

simplistic version of WordNet hierarchies similar to Types (Chapter 3).

Chapter 6 presents one possible method of combining the work presented in this thesis

with a system that makes use of a web search engine and redundancy to create an end to

end Question Answering system capable of competing with the very best QA systems in the

market today.

Tree and Graph Matching

As parsing technologies improved, it was natural to look to the structure of questions and

sentences which possibly contained the answer (called candidate sentences). The primary

objective of these methods was to use only the structure and match the structures of the

question and the sentence using different metrics such as mutual information (Lin and Pantel,

2001) or alignment (Cui et al., 2005).

At first glance, the idea of using only structure to find answers seems misguided. However,

research into pattern grammar (Hunston and Francis, 2000) has shown that words that appear

in similar structures tend to have the same meaning. Other work in this regard involved the

use of different methods of finding similarities such as kernel-based classifiers (Severyn and

Moschitti, 2013).

Some of these methods involve merging the structure of the question and existing struc-

tured databases such as those described previously in this Section (Yih et al., 2014). An
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interesting extension is work by He et al. (2014), who use Markov Logic Networks, as

described by Richardson and Domingos (2006), for reasoning.

Matching over Existing Structured Databases

Querying databases for answers to user questions is arguably the easiest method of automati-

cally answering questions. Unfortunately, translating information and questions from natural

language to database data and queries has been fraught with difficulty.

The limited amount of information available in database form stifled initial attempts to use

database systems for QA. This changed with the introduction of Freebase and DBpedia, both

Linked Data structures. Linked Data is a method of interlinking data to include additional

semantic information. Freebase was a sizeable structured knowledgebase which accumulated

information from several sources including Wikipedia and online collaboration (Bollacker

et al., 2008), which was acquired by Google and subsequently shut down (Google+, 2015).

DBpedia (Auer et al., 2007) is a project aimed at extracting and storing structured information

from Wikipedia, primarily by use of Wikipedia’s infoboxes.

The introduction of the Free917 dataset, a set of 917 questions associated with information

available on Freebase shifted the focus of database reliant question answering to Freebase.

Yao and Van Durme (2014) have shown that methods using Freebase can often outperform

some sophisticated approaches while Berant et al. (2013) have shown how question-answer

pairs can be used to boost semantic parsing. Fader et al. (2014) have shown how data from

Freebase can be combined with automatically extracted tuples to improve the quality of

Question Answering systems. Several other researchers have developed systems based on

Freebase (Bao et al., 2014; Berant and Liang, 2014; Cai and Yates, 2013; Kwiatkowski et al.,

2013)

There have been several attempts at creating Question Answering Systems using DBPedia

(Walter et al., 2012; Yao et al., 2012). While most of these methods first create triples
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(Sections 2.1.4) before then matching them, Unger et al. (2012) have proposed a method

that extracts information from DBpedia by going beyond the representation of questions as

triplets. Fader et al. (2014) provide an overview of systems that use similar KBs.

Work by He et al. (2014) has explored the use of First-order Logic in finding answers

within Linked Data, a method that has since come to be known as Logical Forms over Linked

Data. Other recent work in this area has revolved around an attempt at converting natural

language to a logical form (Yang et al., 2014).

Triples

Another method of representing and reasoning over data for QA is to store information in the

form of Triples. For example, the question “Who wrote The Neverending Story?” can be

represented as:

<[person,organization], wrote, The Neverending Story>

The system would then use similarity metrics to match the relevant sub-graph from a Linked

Data repository (Unger et al., 2012). The most recent and influential work in this regard has

been by Fader et al. (2011). In their paper, they describe ReVerb1, a system that provides

a method of extracting relevant triplets from natural language text. Fader et al. (2013)

subsequently described a method of mapping Open Domain Questions onto the relations

extracted by ReVerb. Fader et al. (2014) then combined these two methods to implement a

Question Answering system that was, at the time, state of the art.

There have been others who have represented information as tuples, such as Yih et al.

(2014), who use Convolutional Neural Network models to find similarities between entities

and relations.
1ReVerb is available at http://reverb.cs.washington.edu/
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2.2 Semantic Text Similarity

2.1.5 Community Question Answering

Community QA (cQA) refers to the large number of forums and websites dedicated to

allowing users, or the community, to answer questions posed by other users. Matching new

questions to existing questions on such websites has recently gained tremendous popularity

(Nakov et al., 2017, 2016) with cQA websites investing heavily in research into the field.

Additionally, companies have started using similar techniques to provide automated chat

support by matching questions by users on a chat system to existing FAQs.

2.1.6 Visual Question Answering

Visual Question Answering (vQA) (Antol et al., 2015) is the task of automatically answering

natural language questions about an image and so requires a multidisciplinary approach to its

solution. Despite results that can appear surprisingly accurate, the task is representative of

the problems inherent to pure deep learning methods, which is the lack of understandability.

Deep networks fed with elements of the images and vector representations of words are

trained to generate answers to questions about the images, making it near impossible to get to

the source when errors present themselves. Figure 2.11 provides examples of vQA.2 One of

the primary contributions of the work presented in this thesis is in making Answer Selection

(Chapter 5) more transparent by use of Question Classification (Chapter 4). The necessity of

explainable AI is further explored in Chapter 3.

2.2 Semantic Text Similarity

The goal of Semantic Text Similarity (STS) is to find the degree of overlap in the meaning of

two pieces of text, which ranges from text fragments that are exact semantic equivalents, to

1Visual QA Demo: https://vqa.cloudcv.org/
2Image Source: https://www.dreamstime.com/editorial-photo-coonoor-tamil-nadu-india-january-th-nilgiri-

mountain-railway-runs-mettupalayam-udagamandalam-south-image95527956

18

https://vqa.cloudcv.org/
https://www.dreamstime.com/editorial-photo-coonoor-tamil-nadu-india-january-th-nilgiri-mountain-railway-runs-mettupalayam-udagamandalam-south-image95527956
https://www.dreamstime.com/editorial-photo-coonoor-tamil-nadu-india-january-th-nilgiri-mountain-railway-runs-mettupalayam-udagamandalam-south-image95527956


2.2 Semantic Text Similarity

(a) Visual QA is, at first glance, magical (Lu et al., 2016).

(b) . . . and can be surprisingly accurate.

(c) When errors creep in, however . . .

(d) . . . analysis and debugging is near impossible.

Fig. 2.1 A Demonstration of Visual QA and its Shortcomings which are Representative of
the Shortcomings of Deep Neural Networks in General.
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others that have no semantic relation. STS has a wide variety of applications, including text

summarisation (Aliguliyev, 2009), machine translation (Kauchak and Barzilay, 2006), and

search optimisation (Sriram et al., 2010).

The STS task, which was set by the SemEval conference for a number of years (Agirre

et al., 2014, 2015), requires that submitted systems assign a score between 0 (the sentences

are on different topics) and 5 (the sentences mean exactly the same thing) that reflects how

similar two sentences are (Agirre et al., 2014, 2015, 2013, 2012).

Most systems that tackled SemEval’s STS task consist of three main approaches: The

first is text alignment, based on the content words’ meaning (Sultan et al., 2014b, 2015). The

second represents text as vectors, which are used to find the similarity score using a vector

similarity metric (such as cosine). Third, machine learning approaches are used to compute

multiple lexical, semantic, and syntactic features to classify each sentence pair’s similarity.

Work on STS done as part of this project is presented in Section 2.2.

2.3 Question Classification

A crucial element of QA is Question Classification (QC), which is the task of classifying

a question based on the expected answer. As an example, the question “Who is the prime

minister?” could be assigned the class “person”, whereas the question “Where is the prime

minister?” could belong to the class “location”. Since the task involves identifying the type

of answer, it is sometimes referred to as Answer Type Classification. While there do exist

QA Systems that do not make use of QC, QC has been shown to significantly improve the

performance of QA systems (Hovy et al., 2001).

Work on QC, as in most NLP tasks, can be broadly divided into three categories: a) those

that make use of machine learning, b) those that rely purely on rules, and c) those that are a

hybrid of the two. With the increased popularity and success of machine learning techniques,

most recent work on QC has been limited to methods that make use of purely statistical
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methods. While there continues to be some exploration into semantic information contained

in sentences, such information is often converted into features for statistical models.

While several Question Taxonomies are available for use in training and testing QC

systems, the most popular is the one introduced by Li and Roth (2002). This popularity stems

from the 5,500 training questions and corresponding classification they provide, in addition

to the classification of the 500 TREC 10 (Voorhees, 2001a) questions. Their classification is

a two-level system which contains a coarse and a fine level of classification for each question.

Table 2.3 lists the classification introduced by them. In this thesis, specific classes are referred

to in the following way: Coarse:Fine. For example, the class animal, contained in the coarse

class ENTY, is referred to as Enty:Animal.

Coarse Fine
ABBR abbreviation, expansion

DESC definition, description, manner, reason

ENTY
animal, body, color, creation, currency, disease, event, food, instrument, language, letter, other,
plant, product, religion, sport, substance, symbol, technique, term, vehicle, word

HUM description, group, individual, title

LOC city, country, mountain, other, state

NUM
code, count, date, distance, money, order, other, percent, percent, period, speed, temperature,
size, weight

Table 2.3 Question Taxonomy introduced by Li and Roth (2002).

The original method proposed by Li and Roth (2002), relies on machine learning and

first classifies questions into coarse classes, before then using the coarse class as a feature in

fine-grained classification. They also report their results for both the coarse and fine classes.

This work, however, is on fine-grained classification.

Metzler and Croft (2005) provide a detailed analysis of statistical methods of QC before

2005 while dismissing rule-based systems as “cumbersome and inflexible”, and a more

recent survey by Loni (2011) details QC methods using more recent Machine Learning

techniques. Work on QC over the last couple of years has involved either reducing the
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number of features (Pota et al., 2016, 2015), focusing on specific domains (Feng et al., 2015)

or using new methods in machine learning such as Convolutional Neural Networks (Kim,

2014) and Skip-Thought Vectors (Kiros et al., 2015).

State of the art in fine-grained classification, before the publication of work done as part

of this project, on Li and Roth (2002)’s data was 91.6% and was achieved by Van-Tu and

Anh-Cuong (2016), who base their work on using semantic features in a linear SVM. Of

specific relevance to work presented in this thesis is the work by Silva et al. (2011), who

first extract headwords, before then mapping these headwords into various categories using

WordNet (Miller, 1995) (discussed in further detail in Section 3.2) to achieve an accuracy of

90.8%. Previous work by (Huang et al., 2008), which also makes use of both headwords and

WordNet, while using slightly different methods, achieves an accuracy of 89.2%.

Work on QC done as part of this project achieved an accuracy of 97.2%, close to a 6

point improvement over the previous state of the art and is detailed in Chapter 4.

2.4 Answer Selection

Most QA systems consist primarily of three components: a) a question analysis component,

b) an Information Extraction (IE) component that extracts a set of candidate sentences, and

c) an answer extraction component that prunes this set of sentences to extract the answer.

QC is performed in the first component. Its results are sometimes used in the IE component

but generally used in answer extraction. The other important aspect of the answer extraction

component is the analysis of linguistic features. Together, these two elements can be used to

prune a set of sentences, some of which might contain the answer to a given question.

This task of selecting, from a list of sentences produced by an IE component, a subset A

which contains the answer to a given question is called Answer Selection (AS). For example,

given the question “Where is the group Wiggles from?”, and two possible sentences (called

candidate sentences): “the Wiggles are four effervescent performers from the Sydney area:
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Anthony Field, Murray Cook, Jeff Fatt and Greg Page”, and “six of the Wiggles’ videos have

reached multi-platinum status in Australia”, the task would require one to return the first

(positive) candidate and not the second (negative) candidate. AS leaves the task of extracting

the Answer from a positive candidate to a downstream task.

Methods of AS rely on establishing some form of relation between the question and

each of the answer candidates, such as bag-of-words, tree edit models (Heilman and Smith,

2010), semantic distances based on word embeddings (Wang and Ittycheriah, 2015), or

deep learning methods such as Convolutional Neural Networks (Rao et al., 2016). To the

best of our knowledge, however, this task has not been attempted with the extensive use of

fine-grained QC.

A lot of the work in using QC for QA took place before the resurgence of Machine

Learning. For example, Kwok et al. (2001) introduce a QA system “MULDER”, that

makes use of wh-phrases, which they define as the interrogative word followed by the words

associated with it. Hermjakob (2001) used an extensive QC system consisting of 115

elementary question classes in their work on QA.

2.4.1 Question Taxonomy and Classification

The specific system of classes used by a QC system is known as a taxonomy, and while

several taxonomies are available, this work makes use of that proposed by Li and Roth (2002),

for two reasons: a) This is one of the most widely used taxonomies, possibly because of

the large training set that Li and Roth (2002) provide, b) while it has been pointed out that

this taxonomy might not have the widest coverage (Mishra and Jain, 2016), it is shown in

Chapter 5 that it is most suited for domain-independent QA.

This taxonomy originally consisted of fifty fine classes divided amongst six coarse classes.

Table 2.3 provides a complete list of these classes along with the changes made in this work

(described in Section 5.2.1).
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While this work on QC is an extension of previous work done as part of this project on

AS (Tayyar Madabushi and Lee, 2016) that achieved an accuracy of 97.2%, other work on

the same taxonomy has involved the use of Linear SVMs by Van-Tu and Anh-Cuong (2016)

and Pota et al. (2016) which achieved accuracies of 91.6% and 89.6% respectively. Work

using Convolutional Neural Networks (Kim, 2014) and Skip-Thought Vectors (Kiros et al.,

2015) has not focused on fine-grained classification.

Work on answer selection, done as part of this project, achieved state of the art results

and is detailed in Chapter 5.

2.5 Deep Learning for Answer Selection

Except for the methods presented in this work, all recent improvements to the task of Answer

Selection have been achieved by use of deep learning models. This section describes deep

learning components used by Rao et al. (2016) in their method for Answer Selection - We

use their method as a baseline, and significantly improve upon it by integrating linguistic

information as detailed in Chapter 5. While deep learning methods have become a popular

choice across NLP tasks, it is our opinion that a return to linguistic analysis will significantly

help in several tasks, even if thay are integrated into deep learning methods as we have done.

2.5.1 Deep Learning

Deep learning refers to a family of deep architectures that learn high-level feature represen-

tations. Although deep learning can be achieved using methods such as Markov random

fields (Jordan et al., 1999; Kindermann and Snell, 1980), the most popular of deep learning

methods is the use of Artificial Neural Networks with hidden layers. These hidden layers

provide a way of abstracting the input and learning representations of the input features, thus

doing away with the need to construct features manually.
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2.5.2 Convolutional Neural Networks

Convolutional neural networks (CNN) (LeCun et al., 2004, 1990), first used in image

processing, provide dense representations of sections of input. This method of dividing up

the input into a grid and finding compact representations for each section of the grid for use in

classification has since been used in several domains such as recommender systems (van den

Oord et al., 2013) and NLP (Collobert and Weston, 2008; Young et al., 2017).

CNNs consist of four different operations: a) Convolution, b) adding non-linearity, c)

Pooling or sub-sampling and d) classification (a fully connected layer). Convolution is the

process of applying a convolutional filter to the input to extract features. The use of different

“filters”, which consist of a matrix that is multiplied by sections of the input matrix, result in

detecting different kinds of features. Figure 2.21 illustrates the use of a convolutional filter. 2.

While there exist convolutional filters for standard operations such as sharpening and filtering

images, the filter is learned during training. Convolution filters are also called Kernels.

Fig. 2.2 A Convolutional filter.

CNNs next introduce non-linearity into the model which allows the modelling of non-

linear functions. The prefered non-linear function in CNNs is f (x) = max(0,x) and is

introduced by a layer consisting of Rectified Linear Units (ReLU) due to its speed (Krizhevsky
1Source: http://adventuresinmachinelearning.com/convolutional-neural-networks-tutorial-tensorflow/
2A more illustrative visual is the animation at https://ujwlkarn.files.wordpress.com/2016/07/convolution_schematic.gif
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et al., 2012) over other non-linear functions such as logh and sigmoid due the its relative

simplicity.

Before the final classification through a fully connected layer, the result of the previous

step is downsized using some down-sampling method, the most common amongst which is

max-pooling. Max-pooling consists of replacing a grid with the maximum value contained

within it.

2.5.3 Convolutional Neural Networks for Natural Language Process-

ing

Words are typically input to neural networks as (dense) vectors called word embeddings.

Creating a representation for sentences from such word embeddings is done using Recurrent

Neural Networks (RNN) (Mikolov et al., 2013b), Long Short Term Memory Networks

(LSTM) (Hochreiter and Schmidhuber, 1997) or CNNs. The relative speed of training CNNs

has led to their adoption in natural language processing. Figure 2.3 (Zhang and Wallace,

2015) illustrates typical CNNs used in Natural Language Processing.

In NLP, convolutions are performed on the matrix of word embeddings as opposed

to the image matrix in image processing. These convolutions are learnt during training.

Max-pooling remains the most common pooling method in NLP after the introduction of

non-linearity. The number and size of the kernels in a CNN are hyper-parameters that are

handcrafted.

2.5.4 Multi-Perspective Convolutional Neural Networks

The method for answer selection used by Rao et al. (2016) makes use of Multi-Perspective

CNNs introduced by He et al. (2015). Also, Rao et al. (2016) make use of a “Siamese”

structure in which two sentences are processed in parallel by two subnetworks that share all

their weights (Bromley et al., 1993). Figure 2.4 provides an overview of their network.
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Fig. 2.3 Depicts three filter region sizes: 2, 3 and 4, each of which has two filters. Every
filter performs convolution on the sentence matrix and generates (variable-length) feature
maps. Then 1-max pooling is performed over each map, i.e., the largest number from each
feature map is recorded. Thus a univariate feature vector is generated from all six maps,
and these six features are concatenated to form a feature vector for the penultimate layer.
The final softmax layer then receives this feature vector as input and uses it to classify the
sentence; here binary classification is assumed and hence two possible output states are
depicted. (Zhang and Wallace, 2015).

Instead of applying convolutional filters on multiple words across the sentence, (He et al.,

2015) additionally apply convolutional filters to individual dimensions of word embeddings.

The intuition they provide is that, while humans may not be able to understand what individual

dimensions of a word embedding represents, there might be information within a single
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Fig. 2.4 Model overview: Two input sentences (on the bottom) are processed in parallel by
identical neural networks, outputting sentence representations. The sentence representations
are compared by the structured similarity measurement layer. The similarity features are then
passed to a fully-connected layer for computing the similarity score (top). (He et al., 2015).

dimension of an embedding that the model can exploit. The application of convolutional

filters across a single dimension of word embeddings is interpreted as over a new perspective,

hence the name. They also note in their work that this multi-perspective convolution provides

the most gain. Figure 2.5 illustrates the different perspectives used over word embeddings.

Fig. 2.5 Left: a holistic filter matches entire word vectors (here, window size is 2). Right: per-
dimension filters match against each dimension of the word embeddings independently. (He
et al., 2015).
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He et al. (2015) also include a layer for finding the similarity between the representations

of the two sentences along each of the “perspectives”. The result of this is passed through a

fully connected layer to find the similarity between two sentences.

2.5.5 Pairwise Ranking and the Triplet Ranking Loss Function

Rao et al. (2016) introduce a method of pairwise ranking for answer selection where prior

methods relied on pointwise classification. They do this by learning a joint representation of

the triplet input (question, positive answer, negative answer) before stacking a triplet ranking

loss function on top, whose objective is to minimise the total number of inversions in the

rankings. This method also uses the “Siamese” structure described in Section 2.5.4 with the

difference that it takes a question-answer pair as input. Rao et al. (2016) make use of the

Multi-Perspective CNN used by He et al. (2015) to train pairwise rankings. An illustration of

this model is provided in Figure 2.6.

Fig. 2.6 Architecture of the pairwise ranking model, which is trained on triplets comprised of
(question, positive answer, negative answer) (Rao et al., 2016).

In essence the encoding of a positive or negative answer candidate and the question are

passed to a CNN or an LSTM to create a combined representation of the two. This resultant

representation consists of the high-level features extracted from the data, which are passed
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through a fully connected layer to extract non-linear combinations. These features are used

by the triple ranking loss function as described below. It should be noted that the same model

is used for creating representations for the positive and the negative candidates. We note

that Rao et al. (2016) also use a word-level component in their experiments, which is not

described here as we do not use word-level representations.

The triplet ranking loss function introduced by them is a function f (.) that captures the

similarity scores, such that, given some question q, positive pairs (q, p+) and negative pairs

(q, p−), the objective is to ensure that f (.) assigns a larger similarity score to positive pairs

than negative pairs:

f (q, p+)> f (q, p−),∀q, p+, p− (2.1)

The triplet loss function, which ensures equation 2.1 holds true by minimising the distance

between the question and the positive answer while maximising the distance between the

question and the negative answer, is given by equation 2.2

min
W

∑
(q,p+)

∑
p−∈N

max(0,1− ( f (q, p+)− f (q, p−)))+λ ∥W∥2 (2.2)

where λ is a regularisation parameter, and W is the parameters of the neural network model

f (.).

2.6 Linguistic Theories

The work presented in this thesis makes use of two preexisting resources, WordNet and

Dependency Parsing. This section provides the theoretical linguistic background for these

resources.
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2.6.1 WordNet

The first resource we make use of is WordNet, a lexical database we use for rule generalisation.

While Section 3.2 details the use of WordNet for this purpose, this section focuses on the

linguistic and psycholinguistic underpinnings of the WordNet project.

WordNet organises nouns, verbs, and adjectives using a different method. The way in

which nouns are represented is of particular interest as this work exploits this structure for

generalising learning. The independent handling of nouns as a lexical subset is backed by

the observation that patients suffering from anomic aphasia, a condition often resulting from

stroke, are left unable to name things or otherwise use nouns in speech, while otherwise

unaffected (Caramazza and Berndt, 1978).

Nouns in WordNet are organised in a hierarchical structure, one that is very relevant to the

work presented in this thesis. This organisation is based on psychological experiments that

showed that people store semantic information in a hierarchical structure so as to optimise the

amount of information that is required to be stored. As a consequence people took less time

to verify that canaries could sing than to verify that they could fly and even longer to verify

that they had skin (M. Collins and Ross Quillian, 1972). This increased time is associated

with the increased distance across a semantic hierarchy. M. Collins and Ross Quillian (1972)

also argued that this difference in reaction time implies that information associated with

different nouns is stored in an inheritance system, much like the system we use to define

Types ( Section 3.7.1).

However, this notion of inheritance has been questioned by other researchers such as

Conrad (1972) who point showed that while “can move” and “has ears” are both properties

that people associate with animal, “An animal can move” is confirmed more rapidly than is

“An animal has ears”.
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Despite this, the creators of WordNet assume that information is both hierarchical and

that the inheritance assumption is indeed correct, but that reaction times probably indicate a

difference in word use rather than word meaning (Miller and Charles, 1991).

2.6.2 Dependency Parsing

Dependency Parsing is the process of extracting dependency relations, which are based on the

linguistic notion of grammatical relationships, from a sentence. Modern statistical parsing

algorithms are based on the Eisner algorithm (Eisner, 1996) for finding the dependency parse

of a sentence and employ deep learning methods to estimate the parse tree significantly faster

than the original algorithm. Eisner (1996) provided three statistical models which are used

as the basis for generating the dependency parse of a sentence. Unlike previous work, they

establish these probabilistic models not on what is observed in training data, but base them

on linguistic analysis. Of the three models they describe and test (A, B and C), the first

two assume that a speaker (or writer) focus on the hearer’s needs (comprehension) whereas

the last emphasises the speaker’s needs (i.e. ease of generation). Their experiments show

that Model C, with its emphasis on the speaker’s needs, produced the best results implying

that “speakers should not hesitate to add extra prepositional phrases to a noun, even if this

lengthens some links that are ordinarily short, or leads to tagging or attachment ambiguities”.

The list and scope of relationships between various elements of a sentence developed

by linguists, while extensive, are often contradictory. Recent work, such as the Universal

Dependencies project (Nivre et al., 2016), has focused on providing a list of relations that

are linguistically motivated and computationally useful. In this work, we analyse sentence

structure using the Stanford Parser (Chen and Manning, 2014). The Stanford parser generates

dependencies that adhere to the Stanford typed dependencies representation (de Marneffe

and Manning, 2008). This representation was developed with the aim of ensuring that the

description of relationships must be accessible to any user who could benefit from text
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understanding. de Marneffe and Manning (2008) provide a detailed analysis of the design

choices and trade-offs along with a comparison against other frameworks such as PARC (King

et al., 2003).

2.7 Summary

This chapter provided details on current Question Answering systems and their shortcomings

before introducing two tasks, Question Classification and answer selection. An overview

of the related work on these tasks was provided with specific emphasis on a couple of deep

learning methods for answer selection that this work relies on (Chapter 5). The final sections

of the Chapter explored certain linguistic theories that this work is based on.

The next chapter introduces the theoretical basis for our work into a hierarchical structure

of concepts before then detailing its implementation through what we call Types. An

empirical analysis of the effectiveness of Types for the task of Semantic Text Similarity is

provided as a proof of concept. Subsequent chapters explore the use of these Types in the

tasks of Question Classification and Answer Selection.
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3
Conceptual Hierarchies and

their Representation through

Types

This chapter provides the theoretical foundation for subsequent work into Question Classifi-

cation and Answer Selection. Cognitive psychology and philosophy provide several models

of cognition and reasoning within the human mind. Without relying on any one of these

hotly debated and sometimes contradictory theories, this work merely assumes that concepts

exist and they can be hierarchical.

3.1 Concepts

Concepts are generalisations or abstractions that allow the use of previous experience in

new situations. For example, a person might have a concept of a dog based on some general
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characteristics of dogs, such as them having four legs, barking or being living beings. Such

characteristics are the default set of characteristics associated with the concept. A dead dog,

for example, has different characteristics as does a blind dog. Figure 3.11 provides a visual

representation of the concept of a TREE. Prototype theory postulates that such abstractions

(Concepts) are represented by their “best” example (Hampton, 2006), which while useful

when thinking about Concepts as presented in this chapter is not central to this work.

Fig. 3.1 The Concept TREE is created in the mind by collecting similarities from different
examples and so creating a generalisation.

Concepts are related to other Concepts providing us with ways of making use of the

experience we accumulate. Such relationships between Concepts can be represented using se-

mantic networks which are expressed as semantic triplets as in "Bob knows John" (Lehmann,

1992). Conceptual graphs are graphical representations of semantic networks which allow

logical operations (Sowa, 1976). Semantic networks also lack formal semantics which was

1By Tomwsulcer [CC0], from Wikimedia Commons
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rectified by the introduction of ontologies which have their logical formalism provided

through description logic (Baader et al., 2003). There are several publicly available semantic

networks including ConceptNet1 and WordNet. ConceptNet includes common sense knowl-

edge (obtained from Open Mind Common Sense) and links to other knowledgebases such as

DBPedia and Wiktionary2 whereas WordNet provides lexical information which contains

less noise, an important reason we use WordNet in this work.

3.2 WordNet

WordNet, inspired by the psycholinguistic theories of lexical memory from the 1990s,

provides different organisations for each part of speech (Miller et al., 1990). WordNet

organises nouns as topical hierarchies, verbs as entailment relationships and adjectives and

adverbs as N-dimensional hyperspaces.

As described by Miller et al. (1990) the word “word” is used to describe both the physical

utterance or inscription and the Concept behind it. They distinguish the two by calling the

first a “word form” and the latter the “lexicalised concept”. As a consequence of polysemy

and synonymy, a lexicalised concept may be expressed by multiple word forms (synonyms)

each of which might be polysemous. WordNet does not attempt to explain what each lexical

concept is but instead aims to provide a way to distinguish them from each other. They

exemplify this by use of the word “board” which is distinguished using the synonym sets

(synsets) {board, committee} and {board, plank}. If no such synonyms exist, WordNet

provides a gloss, as in {board, (a person’s meals, provided regularly for money)}. Thus,

WordNet uses synonym sets or synsets to capture lexicalised concepts or different senses of

words. We call the most commonly occurring sense of a word the first sense and the others

the other-senses
1http://conceptnet.io/
2https://en.wiktionary.org/wiki/Wiktionary:Main_Page

36

https://en.wiktionary.org/wiki/Wiktionary:Main_Page


3.3 WordNet, Question Classification and Types

The hierarchical structure WordNet used for nouns organises (noun) synsets using hy-

ponyms and hypernyms. If ∀e ∈W1, e is an instance of W2, W1 is a hyponym of W2 and

W2 is a hypernym of W1. The hypernym or hyponym closure of a synset is the transitive

closure starting at that synset with the direction defined by hypernymy or hyponymy. In this

work, we only consider the first sense of words in the closure, unless stated otherwise. Also,

through the rest of this work the word “word” is often used to mean the “synset representing

the correct sense of that word in the given context” (which might not be its first sense).

3.3 WordNet, Question Classification and Types

The task of classifying questions based on the class of the expected answer is called Question

Classification and has previously been discussed in Section 2.3. This work breaks down the

task of Question Classification into three subtasks (further detailed in Chapter 4): a) analysis

of the structure of a question to find the most relevant phrase that can be used to classify the

question, b) the extraction of the “head” or another essential word, and c) the linking of that

part to the relevant question class.

Consider the examples presented in Table 3.1. Notice how questions with the word “What”

complicate the classification of questions making the task of classifying questions non-trivial

- nearly every question that uses any other wh-word (including “how” and “describe”) can be

re-written using “what”. For example, the question “How many hostages were killed in the

Entebbe raid?” can be re-written as “What is the number of hostages killed in the Entebbe

raid?”

There are specific words in the question that give away its question class as is clear from

Table 3.1. This specific word, which is used to classify the question, is determined using

the parse tree of the question and hence its syntactic structure (detailed in Section 4.2). The

intuition behind the method for classifying questions presented in this work is that a set of

words can replace such a word without changing the class that the question belongs to. We
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Question Word used for
Classification

Question Class

What athlete makes the most money from sports
merchandise sales?

athlete Human:Individual

What president lived at 219 North Delaware Street,
Independence, Missouri?

president Human:Individual

What city boasts Penn ’s Landing, on the banks of
the Delaware River?

city Location:City

How many hostages were killed in the Entebbe raid? many (hostages) Number:Count

In what year was De Gaulle elected president of
France?

year Number:Year

What Indian tribe is F Troop perpetually doing battle
with?

tribe Human:Group

Table 3.1 Questions with associated headwords and question classes.

postulate that such a set of words represents a Concept, and call such a set a Type. When a

synset and its hyponym closure belong to a Type, we replace them by just the synset so as to

make the definition of Types more compact. This definition using synsets is translated into

words by considering those words that are most representative of each synset.

The remainder of this section details the relationship between the word used for Question

Classification in a question and its WordNet synsets and the next section (Section 3.4)

provides a more general description of Types including how we create them specifically

for Question Classification using a training set. As a first approximation: all words in the

hyponym closure of the word can replace it in the question without changing the question’s

class.

For example, the syntactic structure of the question “What athlete makes the most money

from sports merchandise sales?” is analysed and the word “athlete” is determined to provide

information regarding the class of this questions, which is Human:Individual. Once we have

established this, we can deduce that if any hyponym of the word “athlete” appears in the
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same location, then such a question has the same class. For example, “What ball hawk makes

the most money from sports merchandise sales?”, “What fielder makes the most money

from sports merchandise sales?”, and “What wingback makes the most money from sports

merchandise sales?” all belong to the same question class, namely Human:Individual. It

should be noted that this also allows for the classification of questions of the same form

(syntactic structure) such as “What wingback recently retired?” and “What kicker lived at

219 North Delaware Street, Independence, Missouri?”

However, not all questions of the class Hum:Individual having this syntactic structure

are captured by this information. Consider, for example, the question “What president lived

at 219 North Delaware Street, Independence, Missouri?”. The word “president”, which

is used to classify this question, is not a hyponym of the word “athlete”, but both words

are hyponyms of the word “person”. So, it is important to add the “highest” (assuming

moving through hypernyms is considered going “up”) possible synset the hyponym closure

of which consists of words that can replace the current word without changing the class of

the question - we call such a word the primary classification word. Finding the primary

classification word ensures that a single rule “person or any word in its hyponym closure

located at this location in a question implies that the question belongs to the question class

Human:Individual” (see Section 4.4.2 for a more detailed description of rules) captures

several hundred cases.

This information, however, is still not enough information to classify all questions

belonging to Human:Individual that are of the same syntactic structure as is exemplified

by the question “What movie star acted in the movie Titanic?”. Here the word “star”

(disambiguated using the word movie - Section 4.4.1) is used to classify the question. Similar

words whose first sense is not a hyponym of “person” must be included in the set of words

(which we call a Type) that can replace the word in the question structure without changing

its class. Also, those words whose non-first sense is one that we are interested in (e.g.
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musician.n.02, which we refer to as other-sense words) along with their hyponym closure

must also be added to the Type.

So far we have established that for every syntactic structure and question class available,

a particular word ( the “primary classification word”), its hyponym closure, relevant other-

sense hyponyms and their hyponym closure all belong to the Type used to classify the

question. However, two further modifications need to be made to the Type to capture all

relevant words that can appear at this location of similarly structured questions belonging to

the same question class. The first is when there are multiple “primary classification words”

for the same class as in the case of “food”, “fruit”, and “produce” for the question class

Entity:Food, and the second is when the hyponym closure must exclude a certain sub-tree

as in the case of the sub-tree starting at “person” when classifying questions of the class

Entity:Animal. For example the question “What animal can run fast?” can be classified

using the word animal. However, when creating the associated Type we must exclude the

sub-tree starting at “person” in the hyponym closure of “animal” as the question “What

person can run fast?” does not belong to the question class Entity:Animal but instead to the

class Human:Individual.

Finally, WordNet provides a hierarchical structure only for nouns. However, words that

are not nouns also provide information on the class a question belongs to as in the case of

the word “cause” in the question “What caused the tsunami?” In such cases, there are no

hyponyms to be considered when creating the relevant Type.

3.4 Types beyond Question Classification

The previous section described how sets of synsets are used to determine question classes.

While WordNet uses synsets to define lexicographic concepts, this work makes use of a set

of synsets (and their hyponym closure) associated with a syntactic location in the question to

represent Concepts which help in classifying questions. We call such sets Types.
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Types consist of:

1. One or more primary classification synsets, for each of which the following must also

be added to the Type

• Its hyponym closure

• Excluding those synsets which are an exception (along with their hyponym

closure)

• Including those non-first sense synsets which act in a way similar to the other

hyponyms (and their hyponym closure)

2. Any other words (excluding their hyponym closure) which behave similarly but their

hyponyms do not.

Types represent a Concept which provides crucial information required to classify a

question. The specific combination of synsets that make up a Type is determined through

manual intuition with the aid of careful analysis using the method described in Section 3.4.1

below.

It should be noted that Types are specific to the task at hand, and so far we have seen

Types in the context of Question Classification. However, Types are not the same as the

question classes. For one, multiple Types (and their associated syntactic locations) are

mapped to the same question class, and secondly, the same set of synsets (a Type) can map to

different question classes based on their location within the syntactic structure of the question.

Section 4.4.2 which details the rules relating Types to question classes further clarifies this

difference.

This work makes use of Types in two independent tasks, the first of which is Question

Classification. The second is the task of Semantic Text Similarity (STS), and in each case the

number of Types and the sets of synsets that make up each Type are different. While Types

determine the class of questions in Question Classification they provide a way of comparing

“similar” elements of sentences in Semantic Text Similarity. The intuition is that it helps
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to increase the weight of aligned words of the same Type when measuring similarity. For

example, consider the two pairs of sentences: “The man watched the boys play”, “The man

watched the birds fly away”, and “The man watched the boys play”, “The man watched the

children play.” In this case, increasing the similarity of sentences where the aligned words

are of the same Type (a Type representing individuals in the second pair) as opposed to those

having different Types (Types representing individuals and animals in the first pair) provides

a more accurate representation of the similarity of two sentences. A more detailed description

of this is provided in Section 2.2.

While both of these Type definitions are created manually, the simpler one, used for

Semantic Text Similarity, is defined top-down, by first observing all possible synsets starting

with the top level one in WordNet, namely “Entity”. The next section provides details on the

more involved process of creating Types for Question Classification.

3.4.1 Learning Types for Question Classification

As mentioned in the previous section, Types are specific to a task. This section describes the

method used to define Types as used in Question Classification.

The process of defining Types for a task as complicated as Question Classification

is impossible without looking at examples of questions due to a large number of possible

syntactic structures and classes of questions. It is also essential to have a systematic process to

analyse and sift through such a large amount of data. To this end, a method of simultaneously

“learning” Types and rules for Question Classification was developed and consists of:

1. Parse the question and automatically create its semantic map (Section 4.2, specifically

Table 4.1) which provides the necessary syntactic information to identify the word

useful in classifying the question. For example, the question “Which actress . . . ” is

analysed to identify the word ‘actress’ located at the head of the main noun phrase.
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2. Explore the hypernyms of the word identified and extract the highest level at which

the class of the question does not change (thus identifying the primary classification

word) and add it to the Type representing words at this location in similarly structured

questions. In the above example, these hypernyms are performer, entertainer and

person.

3. Explore the hyponyms of the primary classification word, so any exceptions are added

to the Type as exceptions.

4. Explore the hyponyms of the primary classification word and add any other-sense

synsets (and their hyponyms) which result in the question retaining the same class

when replacing the primary classification word.

5. Once this process is complete, the required rule is “If any word contained in this Type

occurs at the previously identified location in a question, then such a question is of

type Human:Individual”.

Importantly, this learning process, which we call Abstraction-related Concept Hierarchies

Learning (ArCH Learning) is currently a manual process as there is no obvious way to extract

synsets that belong to a particular Type, especially since small errors in this process are vastly

magnified through hyponyms. So, in the above example, it is important to stop at “person”

and not to go further “up” to its hypernym “organism”, as the question of the form “What is

the name of the organism . . . ” is not of the class Human:Individual.

As an example of words that are not nouns but belong to some Type, the word “meaning”

would enable the creation of a Type and associated rule to classify questions such as “What

is the meaning of the word . . . ?”, also, “What does the word . . . mean?” to the question class

Desc:Definition.

Not all of the defined Types have a direct association with a question class. For example,

the Type people_ f rom, consisting of ‘inhabitant.n.01’ and its hyponym closure enables the

identification of the class Entity:TermEq (i.e. equivalent term). This classification is done by
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checking to see if the question asks us what people from a particular place call something,

by use of the syntactic structure “What auxiliary_verb people_ f rom call word?”. As an

example, the question “What do Italians call noodles?” matches this rule and belongs to the

question class Entity:TermEq.

Groups of verbs are also defined as belonging to certain Types, such as the Type of verbs

that can only be performed by a person (e.g. invent) and the Type of words that require

certain additional processing, such as a possessive or a prepositional roll (Section 4.3.1).

These rules do not benefit from the hierarchical structure of Concepts provided by WordNet.

We leave the automation of the process of creating Types for future exploration and present

our ideas on how this might be possible in Section 6.3.1.

3.5 The Relationship Between Types and Word Embeddings

Typically, word embeddings are used to find semantic similarity between words using the

cosine of the angle between the vectors representing two words. Since word embeddings are

generated from a co-occurrence matrix, such a semantic similarity is established based on

the assumption that words in a similar context (having similar words surrounding them) tend

to have similar meanings.

However, it is not just synonyms that occur in the same context. Consider, for example,

the sentence “There were a number of dogs waiting to be fed”. The word ‘dogs’ can be

replaced by ‘cats’, ‘cows’, ‘animals’, and ‘alsatians’. The relationship between these words

is that they are hypernyms, hyponyms or sister terms of the word ‘dog’. So the semantic

similarity captured by embeddings is a hybrid between synonyms, hypernyms, hyponyms

and sister terms (Perek, 2016).

Types derived from a cognitive model are very similar to word embeddings which are

derived using statistical methods, a requirement for each to capture the information they do.
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However, the advantage of Types stems from the flexibility and especially the transparency

they provide.

One direction of research that can be explored in the future is the use of word embeddings

to reduce the amount of manual labour required for defining types (Chapter 6).

3.5.1 Types as an Accessible Alternative to Deep Learning

In addition to the shortcoming of not being transparent and thus making debugging near

impossible (Section 1.4), deep learning methods have an additional shortcoming that is

inherent to statistical methods - they require a tremendous amount of annotated data.

In recent times, access to such information has become restricted, and large corporations

have a monopoly on such data. For a small organisation, academic or corporate, to compete

with established players is like starting a lemonade stand to compete with a large soft drink

manufacturer.

Popular deep learning methods are of little use without the vast amount of data and

powerful servers required to train them. Types, on the other hand, drastically reduce the

amount of data required to create models (Section 3.4) thus making state of the art natural

language processing methods available to those with fewer resources.

3.6 Empirical Evaluation of Types:

Semantic Text Similarity

Having explored the theoretical basis for the use of hierarchical Concepts and their imple-

mentation through Types, we explore an empirical evaluation of Types as applied to the task

of Semantic Text Similarity (STS) in this section.

Work described in this section was published in the paper UoB-UK at SemEval-2016

Task 1: A Flexible and Extendable System for Semantic Text Similarity using Types, Surprise
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and Phrase Linking in the Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval-2016) (Tayyar Madabushi et al., 2016).

This work was done in collaboration with Mark Buhagiar, who worked on STS between

definitions described in Section 3.7.4. The other co-author of this paper is Dr Mark Lee one

of the supervisors of this thesis.

3.6.1 An Introduction to the Task of Semantic Text Similarity

This section presents a system for measuring Semantic Text Similarity in English. Three

novel techniques are introduced: the use of Types (Section 3.7.1), methods of linking phrases

(Section 3.7.1), and the use of a Surprise Factor (Section 3.7.1) to generate 8,370 similarity

measures. We choose a subset of these measures using methods detailed in Section 3.7.3,

combine them with a limited set of features and use Support Vector Regression and Kernel

Ridge Regression to generate a Similarity Score (Section 3.7.3).

The system presented herein outperformed the previous state of the art of SemEval 2015,

and our best performing run achieved a score of 0.71 on the 2016 test set as a whole and over

0.8 on the majority of the datasets.

Our approach also handles definitions separately from arbitrary sentences, as we observed

that their structure is significantly different. Since the method of measuring the similarity of

definitions does not use Types, this section focuses on the generic approach, with definition

similarity discussed briefly in Section 3.7.4.

3.6.2 Preprocessing

Due to the varied nature of the input presented we perform various data cleaning operations.

We start by expansion of common contractions (e.g. “isn’t”) and informal contractions

(e.g. “howz”, “couldve”). We then perform a spell check and hyphen removal, which are

conditional, in the sense that a word is not modified unless the modified form appears in the
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other sentence. All remaining hyphens are replaced by spaces, a method different from those

that previously handled hyphens (Han et al., 2013).

We also perform case correction, as has been done previously (Hänig et al., 2015), since

we observe several instances wherein sentence capitalisation is not suitable for parsing (e.g.

headlines and forums).

3.7 Similarity Measures

We use two measures, which are boosted based on the different parameters described in

Section 3.7.1.

Alignments

The first measure makes use of the aligner developed by Sultan et al. (2014a), which was

used to achieve State of the Art results in 2014 and 2015 (Sultan et al., 2014b, 2015).

Our use of the aligner disregards sequences thus making use of the aligner more as a

synonym finder, with the additional power of the Paraphrase Database (PPDB) (Ganitkevitch

et al., 2013).

Word Embeddings

Word embeddings provide a method of mapping words or phrases to vectors, whose cosine

distance represents semantic similarity. They have proved to be dominant in many NLP tasks,

and have been used by top-ranking systems at SemEval STS (Hänig et al., 2015; Sultan et al.,

2015). We use word2vec1, with the model trained by Google on the Google News dataset,

through its Python interface Gensim2.

1https://code.google.com/p/word2vec/
2https://radimrehurek.com/gensim/models/word2vec.html
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We make use of word2vec in two distinct ways. The first is by extracting the mean of the

vector representation of each word of a Type and finding its cosine similarity between the

two sentences. The second is by adding the word2vec similarity scores of words not aligned

by contained in the same Type. We also provide the option of disregarding word pairs that

have a score of less than 0.3, a method similar to that by Hänig et al. (2015).

3.7.1 Boosting Similarity

In this section, we detail the variations used to generate different similarity measures. These

variations are not used simultaneously, but are instead combined as described in Algorithm 1

(Section 3.7.2), which iterates through all possible variations to generate a different similarity

score associated with each combination.

Type Specific Comparison

Given a sentence pair, we calculate their similarity based only on how similar corresponding

Parts-of-Speech (POS) are, a method previous systems have made use of, either implic-

itly (Kashyap et al., 2014; Sultan et al., 2015) or explicitly (Hänig et al., 2015).

We extend this idea by defining what we call Types for Semantic Text Similarity, which

further subdivides each POS, previously discussed in Section 3.4. A Type represents an

abstract Concept that several words can share. Consider the sentence pair “A man is sitting

on a stool”, “A boy is sitting on a chair”. Although the words “man”, “boy”, “stool” and

“chair” are all nouns retrieved, an effective strategy for comparing these sentences would

be to compare the first two and the last two words independently, before then adding up

their similarity. To achieve this, we categorise words into different Types, which are then

compared across sentences. In this case, such a categorisation might place the first two into

the Type “Person” and the others into the category “Artifact”. This problem could very easily

extend to the problem of Word Sense Disambiguation, which we avoid by use of a heuristic.
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We calculate the Type of a noun for Semantic Text Similarity by the use of WordNet

hypernyms. We recursively find hypernyms until we reach a manually selected set of

Concepts (such as food.n.02). We manually combine sets of such Concepts to define a

Type. As a concrete example, we combine the WordNet Concepts “communication.n.02”,

“food.n.02” and other similar Concepts into the Type “thing_r1”. As a single word can be

part of several Types, based on the particular sense of the word, we pick the most frequently

occurring Type for each word. Appendix A provides details on the definitions of Types used

for STS.

Phrase Linking

Consider sentences with the phrases “Prime Minister” and “Prime Number”. Although the

word “Prime” is present in both sentences, the context in which it is being used makes this

irrelevant. In this particular case, the semantic similarity of the sentences is dependent on

the head of the phrase that the word “Prime” is contained in (i.e. “Minister” and “Number”).

This is also the case with phrases that contain adjectives and adverbs.

We address this by finding phrases that consist of adjectives, adverbs and nouns, and

varying the importance of the semantic similarity between words that are not the head of

that phrase by multiplying the similarity score by various weighting factors described below.

The similarity of each word that is part of such a phrase, but not the head of the phrase, is

additionally weighted in three different ways. The first assigns a zero or one weight based on

whether or not the head of the phrase is aligned, the second provides a weight based on the

number of words, following this word, that is aligned in the phrase, and the third ignores the

phrase structure.
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Noun Importance

Consider the following sentence pairs with relations assigned by human annotators: “A boy

is playing a guitar.”, “A man is playing a guitar.”, rel: 3.2; and “A man is cutting up a potato.”,

“A man is cutting up carrots.”, rel: 2.4. Although both pairs of sentences differ by exactly

one noun, the first pair was considered to be more closely associated than the second. We

associate this to what we call the “Surprise” and assign a value to this, which we call the

“Surprise Factor”. Surprise is based on the work by Dunning (1993), who observed that the

assumption of normality of data is invalid as “simple word counts made on a moderate-sized

corpus show that words that have a frequency of less than one in 50,000 words make up

about 20-30% of typical English language news-wire reports. This ‘rare’ quarter of English

includes many of the content-bearing words . . . .”

We define the Surprise Factor of a noun or phrase to be proportional to the number of

Web Search Hits for that phrase or term, while inversely proportional to the Search Hits in the

case of proper nouns. Intuitively this makes sense, as words that are more common generate

less Surprise, carry less information, and will also be more widely used on the Internet.

We incorporate this idea of Surprise by adding the option of additionally weighting nouns

by the total number of Web Search Hits or Results1. We define, Hi to be the number of Web

Search Hits for the noun i, HT the total number of hits for all nouns defined by:

HT =
N

∑
i=0

Hi (3.1)

Ni the fraction of the Search Hits that noun i captures, defined by:

Ni =
Hi

HT
(3.2)

and NT the normalised total of all nouns (C) in a given sentence defined by

1We use the Bing Web Search API: http://www.bing.com/toolbox/bingsearchapi
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NT =
C

∑
i=0

Ni (3.3)

We define the Surprise of word i in terms of the above in Equation 3.4.

Si =
Ni

NT
(3.4)

3.7.2 System Overview

Algorithm 1 provides an overview of the system we use to generate the various Similarity

Scores. We call each combination that generates a score a “Method”. We use thirty weights

for Types A while providing the option of dividing the scores by the number of WordNet

Synsets (UseSSToWeight), which captures any dilution due to a word’s different senses. We

also scale word2vec scores by different values. This gives us a total of 8,370 “Methods”.

In calculating the similarity score, we capture the fraction of each Type that is aligned and

scale it by the weight of that Type. This is captured in Equation 3.5 where scoret represents

the Similarity Score assigned to Type t by either of the measures detailed in Section 3.7,

countt represents the number of words of Type t in both sentences, wt the weight of Type t in

the current iteration, and T is the total number of Types.

5× (
∑

T
t=0 scoret×wt×2

∑
T
t=0 countt×wt

) (3.5)

3.7.3 Combining Similarity Scores

As described above, we use variations to generate thousands of Similarity Scores, each of

which we call a “Method”. Each Method’s performance varies depending on the input. In

this section, we detail the process for combining these Methods, which is performed using

either Support Vector Regression (SVR) or Kernel Ridge Regression (KRR).
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Data: Sentence Pairs
Result: List of Similarity Scores

1 Initialise list of similarity scores “SimScores” to empty list;
2 for w in Type-Weights do
3 for n in NounHandleMethod do
4 for av in Adjective-AdverbHandleMethod do
5 for UseSearchHits in [True,False] do
6 if UseSearchHits == True then
7 Calculate Similarity Score (SS) using Alignments;
8 Append SS to SimScores;
9 Continue;

10 for UseSSToWeight in [True, False] do
11 Calculate Similarity Score (SS) using Alignments;
12 Append SS to SimScores;
13 for UseWeightCutOff in [True,False] do
14 for VectorCombineMethod in [UseAlignments, UseMeanVector] do
15 for ScaleVectorSimBy in [ 6, 5, 4, 3, 2, 1, “log” ] do
16 Calculate Similarity Score (SS) using Word Embeddings;
17 Append SS to SimScores;
18 Return SimScores (the list of similarity scores);

Algorithm 1: Calculating Semantic Similarity Scores

Picking a Subset of Methods

Instead of using all generated scores as features for the SVR or KRR model, we first prune

the scores generated by various methods. To perform this pruning, each of our Methods is

ranked using three metrics with respect to the training set. The first is by use of the Pearson

Correlation between the similarity scores generated and the similarity scores of the training

set (a criterion we call “Method”), the second is based on the sum of the absolute error

between the similarity scores (a criterion we call “Error”). The third metric aggregates the

rankings from the two criterion described above, and is called this criterion “Combine”. We

select the similarity scores generated by the top 50 methods using one of the three selection

criteria for each run.
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Generating Similarity Scores

In addition to using scores from the chosen Methods, we add the following features to some

of our submitted runs: a) a binary value to represent whether each of the sentences were

case corrected, b) the length of each of the sentences, c) the number of continuous aligned

or unaligned sequences, d) the maximum and minimum lengths of continuous aligned or

unaligned sequences, and e) a binary value to represent alignments that are non-sequential.

It should be noted that the specific Methods we choose for use in the SVR or KRR will

depend on the training data picked. We found, by testing our system using several different

combinations of training data, that the best results were achieved when our system was trained

on the headlines data from the years 2015, 2014 and 2013. The method selection criterion,

the regression model and parameters used for each of the runs submitted are detailed in Table

3.2. Although some of the settings are very similar (e.g. run2), we noticed that these minor

changes translated to significant differences in performance.

3.7.4 Finding Similarities between Definitions

To find similarities between definitions, we first identify the word that is being defined

by the definition. We achieve this by use of OneLook’s reverse dictionary search1, which

returns many candidate words for a given definition. For each definition, the similarity of

the top 10 candidates is then computed using word2vec and five similarity metrics provided

by WordNet: Path distance (Ferlež and Gams, 2004), Leacock-Chodorow (Leacock and

Chodorow, 1998), Wu and Palmer (Wu and Palmer, 1994), Jiang-Conrath (Jiang and Conrath,

1997) and Lin (Lin, 1998). The final score is scaled between 0 and 5 and averaged across the

ten candidates returned by OneLook.

We found this method of calculating similarities between definitions to be very good at

telling if two definitions refer to the same word, but not ideally suited for measuring how

1http://www.onelook.com/reverse-dictionary.shtml
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Run Headlines Other Datasets

Run1

Model: KRR Model: SVR
Features: False Features: False

Train: Headlines Train: Headlines
Picked: Combine Picked: Combine
Kernel: Poly C: 100
Alpha: 50 Epsilon: 0.05

Gamma: 9e-05

Run2

Model: SVR Model: SVR
Features True Features: True

Train: Headlines Train: Headlines
Picked: Method Picked: Method

C: 100 C: 100
Epsilon: 0.01 Epsilon: 0.05
Gamma: 9e-05 Gamma: 9e-06

Run3

Model: SVR Model: SVR
Features True Features: True

Train: Headlines Train: Headlines
Picked: Method Picked: Combine

C: 100 C: 100
Epsilon: 0.01 Epsilon: 0.01
Gamma: 9e-05 Gamma: 9e-06

Table 3.2 Parameters and models used for each run. The row Features represents if features
were used, Train represents the training data used, and Picked represents the selection
criterion (Method, Error or Combine).

similar they are. As a consequence, we found that the results were clustered around 0 and 5.

The system produced a Pearson correlation of 0.69 on the SemEval 2014 definitions data set.

3.7.5 Results and Analysis

Dataset Best Run1 Run2 Run3
Mean .77807 .70940 .70168 .70911
postedit-
ing .86690 .81272 .80835 .81333

ques-ques .74705 .56040 .47904 .56451
headlines .82749 .81894 .82352 .81894
plagiarism .84138 .82066 .82406 .81958
ans-ans .69235 .52460 .55217 .52028

Table 3.3 Performance on the 2016 STS Test Set
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We list the performance of our system in Table 3.3. Our system’s poor performance on

the ans-ans and ques-ques datasets can be attributed to our choice of training data, which,

although well suited for previous years, was not well suited for these datasets.

However, our system produces State of the Art results on the 2015 Test Sets. A breakdown

of each of the run’s performance against the 2015 STS data set is provided in Table 3.4. We

note that the results we have reported for the previous State of Art for individual data sources

are not the results from just the winning system but the State of Art across all Systems for

that data source. Our system also achieves comparable results (0.7793) to that presented by

Sultan et al. (2015) (0.779) on the 2014 STS dataset. The weighted mean reported herein

does not include definitions as the method for finding similarities between definitions does

not make use of Types.

Source St. of
Art Run1 Run2 Run3

Mean 0.8015 0.8086 0.8147 0.8130
ans-std 0.7879 0.7919 0.7965 0.7953
ans-for 0.739 0.7184 0.7137 0.7090
belief 0.7717 0.7703 0.7811 0.7752
head-
lines 0.8417 0.8508 0.8532 0.8532

images 0.8713 0.8448 0.8617 0.8615
Table 3.4 Performance on the 2015 STS Test Set.

Source St. of
Art Run1 Run2 Run3

Mean 0.779 0.7714 0.7793 0.7790
de-
forum 0.504 0.5435 0.5630 0.5636

de-news 0.785 0.7718 0.7774 0.7756
head-
lines 0.765 0.8082 0.8055 0.8055

images 0.834 0.8340 0.8492 0.8496
OnWN 0.875 – – –
tweet-n 0.792 0.7551 0.7569 0.7573

Table 3.5 Performance on the 2014 STS Test Set.
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Table 3.5 provides a comparison of our system against the previous State of the Art for

the STS 2014 data set. The overall State of Art across all data sets was reported by Sultan

et al. (2015) based on their 2015 System.

3.8 Summary

This chapter provided the theoretical background for Types, a novel method of representing

Concepts that can be used in different tasks. The chapter then provided details on what con-

stitutes a Type before using the task of Semantic Text Similarity to validate the effectiveness

of Types.

The next chapter details the task of classifying questions based on their expected class

of answer and details how Types are used to achieve state of the art results in the task on a

standard dataset.
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Question Classification

This chapter details a purely rule-based system for Question Classification (Section 2.3)

which is built on conceptual hierarchies and Types. This system is divided into two parts:

The first is the extraction of relevant words from a question by use of its structure, and the

second is the classification of questions based on rules that associate these words to concepts.

This work achieved an accuracy of 97.2%, close to a 6 point improvement over the previous

State of the Art of 91.6% and has remained state of the art over the last two years.

The work described in this chapter was published in the paper High Accuracy Rule-based

Question Classification using Question Syntax and Semantics in the Proceedings of COLING

2016, the 26th International Conference on Computational Linguistics: Technical Papers

(Coling 2016). 2016 (Tayyar Madabushi and Lee, 2016). The co-author of this paper is one

of the supervisors of the author.

4.1 System Overview

The system presented in this work consists of three parts: a) extracting a Question’s Syntactic

Map (defined in Section 4.2.1), b) identifying the headword of the noun phrase in the question

while handling Entity Identification and phrase detection, and c) using rules to map words at
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different positions in the Syntactic Map to identify the QC. These are further broken down

into the following steps (programmatically, methods):

Syntactic Map
Extraction

Question Rewrite Rewrites questions that are in non-standard form.

Parse Tree Analysis
Extract structure information from the question using
Constituency-based parse trees

Word, Phrase and
Entity Extraction

Headword Extraction
Extract headwords from noun phrases in the question
using a) Possessive Unrolling b) Preposition Rolling
c) Entity Identification

Verb, Wh-word and
Adjective Extraction

Extract the Auxiliary and Major Verbs, the Wh-word and
all adjectives from the question.

Rule-based
Classification

Match Rules based
on the Question
Syntax and Word
Type

Using a hierarchy of syntactic positions in a question,
iteratively check to see if there exists a rule for mapping
the word at that position to a QC.

For example, given the question “Name of actress from England in the movie ‘The Titanic’

is what?”, our system identifies its QC as follows: We first identify that this question is not in

a form that we can analyse to extract the Syntactic Map and rewrite it as “What is the name

of the actress from England in the movie ‘The Titanic’?” (Section 4.2.2). The question’s

parse tree is then analysed to generate the Question’s Syntactic Map (Section 4.2.1). We then

identify the headword to be the noun actress using prepositional rolling (Section 4.3.1). At

this stage, we have established that the question’s wh-word is “What”, auxiliary verb is “is”,

and headword is “actress”. We check for the existence of a rule that classifies this question

by iterating through these elements in a predefined order (Section 4.4.2). This results in the

word “actress” matching the rule : ‘occupation.n.01’ and its hyponyms in SQ-NNP when the

wh-word is ‘what’ indicate that the question class is hum:ind, so enabling us to classify the

question as hum:ind.

4.1.1 Methodology

To avoid bias, we use the 5,500 questions and their respective question classes provided

as training data by Li and Roth (2002) for exploration and rule discovery, and ensure that
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the 500 TREC questions, which comprise the test set, are not observed during the creation

of rules (although the system is, at regular intervals, tested on this set to ensure progress).

Once we complete the analysis of a question’s parse tree, not all words in the question are of

further relevance to the task of QC. However, so as to maximise the number of words that we

have rules for, we try to create rules for all words that appear in the training set.

4.2 Syntactic Maps

Previous work that has made use of parse trees includes that by Silva et al. (2011), who used

Collin’s Rules (Collins, 1999) to extract headwords and work by Shen and Lapata (2007)

who made use of FrameNet (Baker et al., 1998). Unlike these works, we first extract what we

call a Question’s Syntactic Map, before creating rules that depend on the position of words in

this Map.

A Syntactic Map (SM), unlike a parse tree, is a fixed structure that we fill in with

information from a question’s parse tree and can contain empty or “None” elements. It is a

generic template for all the different kinds of questions that we can classify, and any question

that we cannot convert to a Syntactic Map, cannot be classified using our system. Crucially,

the SM contains the following five elements of a question: a) the question’s wh-word b) the

noun phrase (if any) contained in the WHNP sub-tree and its internal phrase structure, and

from the SQ sub-tree of the parse tree: c) the Auxiliary Verb (AVP) d) the noun phrase (if

any) and its internal phrase structure, and e) the Main Verb (MVP) (if any). Noun phrases

including possessives, and prepositional phrases are extracted into similar fixed structures.

Programmatically, a SM is a class (object-oriented programming), as are the constituent

noun phrases, prepositional phrases, and verbs. The generic structure of a SM, along with

the structure of its constituents is shown in Table 4.1.

In the question “How much does the President get paid ?”, it is the adverb “much” that

allows us to infer that the expected answer is a number and additionally, the word “paid”
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Syntactic Map Constituent Noun Phrase Constituent Prepositional Phrase Constituent Verb

WH Word What/Name/Who/. . .
WHNP JJ Adjective PP Prepositional word

NNP Noun Phrase in WHNP NN Noun NN Attached Noun Phrase
SQ PRP Preposition VP Attached Verb Phrase VB Verb

AVP Axillary Verb of SQ POS Possessive CPP Attached Prepositional Phrase
NNP Noun Phrase in SQ TJJ Trailing Adjective
MVP First Main Verb of SQ

Table 4.1 The fixed structure of a Syntactic Map (left), and the constituent phrase structures
(right).

allows us to infer that the number, in fact, represents money hence resulting in the question

class num:money.

In the questions “What is a golf ball made of ?” and “What does gringo mean ?” the

verbs after the noun (the first Main Verb or MVP) provide us with important clues on which

question class these questions belong to (in this case enty:substance and desc:def). It is for

this reason that we move beyond conventional headword extraction and focus on populating

Syntactic Maps, which capture more information about the question. Although Silva et al.

(2011) consider words other than nouns, they do so only when the questions contain certain

exact phrases.

4.2.1 Syntactic Map Extraction

The first step in SM extraction is the extraction of the “WHNP” and “SQ” sections of a

question from its constituent parse tree, which we generate using the Stanford CoreNLP

toolkit (Manning et al., 2014). The WHNP sub-tree represents the Wh-noun Phrase and the

SQ sub-tree the main clause of a wh-question. In cases where there is neither (e.g. Name

the highest mountain.), we use the first noun phrase as the SQ sub-tree. From the WHNP

and the SQ sections of the parse tree, we extract the various elements of the SM as shown

in Table 4.1. This requires the parsing of noun, prepositional, possessive and verb phrases.

Due to space constraints, we only provide an overview of each of these below. Additionally,
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extracting each of these elements is done recursively as sentences often contain possessive

phrases or prepositional phrases within one another. Table 4.2 illustrates one such scenario

in which a question has two recursive possessive phrases.

Parse Tree Extracted Structure

ROOT

SBARQ

WHNP

WP

What

SQ

VBZ

is

NP

NP

NP

NNP

Dudley

NNP

Do-Right

POS

’s

NN

horse

POS

’s

NN

name

.

?

WH Word What
WHNP

NNP None
SQ

AVP [’is’]
NNP (Possessive)Dudley Do-Right (Possessive)horse name
MVP

Table 4.2 The Parse Tree and Extracted SM of a Question Consisting of a Nested Structure.

We make the conscious decision of stopping the SM extraction process after reaching the

first main verb. This is because we observed that there were very few questions that require

structural information beyond this point.

Our method of analysing noun phrases handles the extraction of adjectives, possessive

phrases, prepositions and trailing adjectives but ignores all determiners. Prior to analysing

parse trees of noun phrases, we first modify certain parse tree patterns that noun phrases occur

in. The resultant Constituency-based parse trees are not always valid but greatly simplify

the analysis of noun phrases. Two examples of the modifications we perform to noun phrase

sub-trees are illustrated in Table 4.3

This simplification process leaves us with the task of extracting information from noun

phrases that belong to a much smaller set of sub-tree patterns. Some of the more common

noun phrase patterns are illustrated in Table 4.4. Possessive phrases are treated as nouns

that must have, attached to them, yet another noun. When we identify a preposition phrase
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NP

NP

NNS

Word1

ADJP

RB

Word2

JJ

Word3

PP

Prepositional Phrase
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NP
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Word1
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Word2
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Word3
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Prepositional Phrase

NP

NP

DT

Word1

NN

Word1

CC

and

NP

DT

Word1

NN

Word1

=⇒
NP

DT

Word1

NN

Word1

DT

Word1

NN

Word1

Table 4.3 Some of the Parse Tree Modifications that are Performed on Noun Phrases.

or a verb phrase, that sub-tree is passed to either the preposition or verb analysis method

respectively.

NP

JJ

word

DT

word

. . .

word

NN

Noun

NP

NP

. . .

word

POS

’

NP

Noun Phrase

NP

NP

Noun Phrase

PP

Prepositional Phrase

Table 4.4 Some Common Sub-tree Patterns that Noun Phrases occur in.

Similarly, we extract information from prepositional sub-trees based on their structure,

which nearly always belongs to one of the following three patterns: A preposition phrase

with one child that is the preposition and the other that is one of either a noun phrase, verb

phrase or another prepositional phrase (e.g. “name of the prime minister of UK”). These

patterns are illustrated in Table 4.5. Just as in the case of noun phrases, we pass on any

sub-trees of phrases that are of a different kind to the appropriate analysis module, which

enables us to generate a recursive SM.
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PP

IN

in/on/. . .

NP

Noun Phrase

PP

IN

in/on/. . .

VP

Verb Phrase

PP

IN

in/on/. . .

PP

Prepositional Phrase

Table 4.5 Some Common Sub-Tree Patterns that Prepositional Phrases occur in.

4.2.2 Question Rewrites

There are some questions that do not belong to the standard structure of questions such as “A

corgi is a kind of what?” and “In 1309 the papal court was forced to move from Rome to

where?”. We identify several of these structures and create rewrite rules (e.g x is/was y in/of

what z?) to rewrite these questions to a form that we can parse. We use regular expressions

instead of parse tree analysis as these structures are very easy to identify and so the overhead

of parsing is not justified. Using these rules the above two questions will be rewritten as

“What is a corgi a kind of?” and “To where was the papal court forced to move from Rome in

1309?”.

4.3 Concept Identification

In this section, we provide details on methods we use for identifying relevant Concepts using

Types (described in Chapter 3), which we extract by analysing the SM.

4.3.1 Preposition Rolling and Possessive Unrolling

Rolling and Unrolling refer to the selective moving forward through a preposition, or

backwards through a possessive noun. Consider the question “What is the quantity of

American soldiers still unaccounted for from the Vietnam war?” from which we extract

quantity(PP) of PP-NN:(JJ)American soldiers, and the question “What are the different types

of plastic?” from which we extract (JJ)different types(PP) of PP-NN: plastic. In the second
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instance, we must roll through the preposition to reach the relevant word “plastic”, whereas,

in the first instance, we must not, so identifying “quantity’.

Similarly, consider the question “What game’s board shows the territories of Irkutsk,

Yakutsk and Kamchatka?” from which we extract the noun phrase (Possessive)game board,

and the question “Name Alvin’s brothers.” from which we extract (Possessive)Alvin brothers.

In the first instance we need to unroll through the possessive to reach the relevant word

“game”, whereas in the second case we must not. We call this selective process of moving

forward through a preposition “Rolling”, and the process of selectively moving backwards

through a possessive “Unrolling”. Rolling and Unrolling are achieved through a list of rules

that depend on the Type of the target and source of the Roll or Unroll.

4.3.2 Headword and Phrase Extraction

Consider the question “What mystery writer penned ‘...the glory that was Greece, and the

grandeur that was Rome’?”. The relevant noun phrase that we extract from the SM is

“mystery writer” and the head of this noun phrase is “writer”, the last noun in the noun phrase.

This is often the case, and some previous works have used only this to identify the head of

a noun phrase (Metzler and Croft, 2005). Unfortunately, this is not always the case, and

does not always provide the word that is most useful for QC. For example, the noun phrase

extracted from “What crop failure caused the Irish Famine?” is “crop failure” and the relevant

noun is “crop”. Although it can be argued that the head noun in this phrase is “failure”,

qualified by “crop”, this would not aid us in classification, as “crops” are a form of food and

the expected Question Class is enty:food, while “failure” is a very different Concept.

We automatically identify the head noun by identifying Verb Nouns and Descriptive

Nouns starting at the right of the noun phrase and ignoring such nouns. We define Verb

Nouns as nouns that have a more common verb form (e.g. fail) or verbs that are “acts”, which

we identify by parsing the definition of the verb. Similarly, we define Descriptive Nouns as
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nouns that belong to a Type we define as descriptive which includes, for example, hyponyms

of the synyset ’digit.n.01’.

4.3.3 Entity Identification

Let us now consider the question “What is bipolar disorder?”. The correct Question Class for

this question is desc:definition, however, it is easy to miss-classify this question as belonging

to the class enty:dismed (entity, disease or medicine), because the word “bipolar” is tagged

as an adjective. To get around this we require a method of identifying that “bipolar disorder”

must be considered as a single entity.

Even in instances wherein it is relatively easy to identify an entity, as in the case of

phrases that consist of consecutive nouns, it is important to be able to convert these phrases to

a form that appears in WordNet. For example, the phrase “equity securities” can be identified

as a single entity, however, it is listed in WordNet under the entry “shares”.

We identify these phrases using a method called Wikification (Mihalcea and Csomai,

2007), which is the process of linking words and phrases in a piece of text to titles of

Wikipedia entries. The intuition behind this is that a phrase that appears as a Wikipedia

Article title must be important enough to be considered as a single Entity. We base our

method of Wikification on the original, while replacing the process of keyword identification

with SM and that of Word Sense Disambiguation with the method detailed in Section 4.4.1.

For example, there is an article on Wikipedia titled “Bipolar Disorder” on Wikipedia and the

Wikified term for “equity securities” is “Shares”.
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4.4 Question Classification using Syntactic Maps

Once we have the SM of a question, we use rules to identify the relevant QC. However,

before we can match appropriate words, we require a way of identifying the correct sense of

a word.

4.4.1 Word Sense Disambiguation

SMs often provide us with a single word that represents the object that the question expects

as an answer. The question “What album put The Beatles on the cover of Time in 1967

?”, for example, requires that the answer consists of an “album”. However, it is unclear

whether album refers to “one or more recordings issued together” or “a book of blank pages

with pockets or envelopes”. Huang et al. (2008) address this problem by use of the Lesk

Algorithm (Lesk, 1986).

Our use of SM allows for implicit Word Sense Disambiguation as it is rare for the same

word to appear at the same syntactic location but in different senses. When this does happen

however, we identify the sense of a word based on the Types of the surrounding elements of

the SM. For example, “How much does it cost to fly to Japan?” and “How much does a plane

weigh?” both have the word “much” at the same position and so require us to identify the

Types of associated words (i.e. “cost” and “weigh”) to be able to disambiguate the relevant

Concept.

4.4.2 Mapping Question Classes

The intuition behind the mapping process is that words or phrases at certain positions in the

SM trigger certain Concepts, which reveals the question class. To this end, we use Types

defined for each different position in the SM to map questions to question classes. For

example, the word “do” appearing as the auxiliary verb is handled differently from when
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it appears as the main verb in the SM. The order in which different sections of the SM are

considered determines which word is finally used during classification.

There are some special words, such as “much”, “do”, “name” and “call”, that require

more complex classification rules. The adjective “much” for example could indicate the class

num:money or num:weight depending on whether the other sections of the SM contain the

Type “money” or the Type “weight”. As in the case of WSD, we define disambiguation rules

for each such word.

Algorithm 2, while not exhaustive in listing the mapping rules (due to space constraints),

provides a simplified overview of the mapping of Semantic Maps to Question Classes. It

takes as input the SM, the Type definitions and associated Question Classes and returns a

tuple consisting of the Major and Minor question classes. Just over 230 Type definitions and

10 special Word Sense Disambiguation definitions cover the entire test set, and at the time of

writing, these have been expanded to around 600 Type definitions and 70 WSD definitions.

Algorithm 2 can broadly be divided into three parts: The first identifies the noun phrase

most likely to be useful in finding the class of the question before then extracting a list of

words, ordered by priority, that are used for this classification (up to line 24). Once this

is done, the second part (loop detailed between lines 25 and 27) then iterates through all

of these words so as to identify the relevant class. The last part of the algorithm checks

to see if the question contains non-nouns (such as in questions starting “How many . . . ”)

which overwrite the question class determined so far. If all else fails, the algorithm returns

Entity:Other as the default class (line 44).

4.5 Results

We achieve an accuracy of 97.2% on the TREC 10 dataset which translates to an incorrect

tagging of 14 of the 500 questions in the dataset. This is close to a 6 point improvement over

the previous state of the art of 91.6% (Van-Tu and Anh-Cuong, 2016). We list our accuracy
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against that of various other works that have reported results on the TREC 10 dataset in Table

4.6.

Study Classifier Accuracy

Coarse Fine

This Work None - 97.2%

Van-Tu and Anh-Cuong (2016) Linear SVM 95.2% 91.6%
Pota et al. (2016, 2015) Linear SVM 89.6% 82.0%
Kim (2014) Convolutional Neural Networks 93.6% -
Kiros et al. (2015) Skip-Thought Vectors 91.8% -
Silva et al. (2011) Linear SVM 95.0% 90.8%
Loni et al. (2011) Linear SVM 93.6% 89.0%
Merkel and Klakow (2007) Language Modelling - 80.8%
Li and Roth (2006) SNoW - 89.3%
Li and Roth (2002) SNoW 91.0% 84.2%

Table 4.6 Results Achieved by this Work alongside some other Works that use the same
Dataset.

4.5.1 Error Analysis

Table 4.7 provides a list of some of the questions that we misclassify along with the reason

for this. One of the advantages of a purely rule-based system is the ability to pinpoint the

exact reason for an incorrect classification.

4.6 Summary

This chapter described a method of classifying questions based on the class of the expected

answer using Types introduced in the previous chapter (Chapter 3). Our experiments showed

that this new method outperforms all previous methods, highlighting the effectiveness of

Types.
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The next chapter makes use of a modified version of this system to outperform the current

state of the art in Answer Selection, a task introduced in Section 2.4.
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Data: Syntactic Map, Type Definitions, Classes associated with Type Definitions.
Result: Question Class

1 if Preposition Rolling Possible then
2 Perform Preposition Roll
3 if Possessive Unrolling Possible then
4 Perform Possessive Unroll
5 Initialise head_noun_class to None ; /* head_noun_class is a Tuple Consisting of the

Major and Minor Question Type */
6 head_noun← Extract Head Noun from Syntactic Map ;
7 head_noun_ad jectives← Extract Head Noun adjectives from Syntactic Map ;
8 for reversed( head_noun_ad jectives ) do
9 if ad jective has Type Defined then

10 head_noun_class← Class associated with Type;
11 if head_noun_class is None then
12 if head_noun has Type Defined then
13 head_noun_class← Class associated with Type;

14 if head_noun_class[0] == “ABBR” then
15 if head_noun is an Abbreviation then
16 return ( ’ABBR’, ’exp’ )
17 return head_noun_class

18 if All of the following elements in the Syntactic Map are Empty: WHNP-NNP, SQ-MVP,
head_noun_ad jectives then

19 if There has been no Rolling or Unrolling then
20 if AVP is one of “is”, “are”, “was”, “were” then
21 if WH_Word is “What” then
22 return (’DESC’, ’def’)
23 if WH_Word is “Who” then
24 return (’HUM’, ’desc’)

25 for reversed( head_noun_ad jectives ) do
26 if ad jective has WSD Type Defined then
27 return Class associated with WSD Type;

28 wh_word← Extract What Word from Syntactic Map ;
29 if wh_word == “define” then
30 if head_noun_class[0] == “DESC” then
31 return head_noun_class
32 return ( “DESC”, “def” )
33 if wh_word == “how” then
34 if head_noun_class[0] == “DESC” then
35 return head_noun_class
36 return ( “DESC”, “manner” )

/* Similar restrictions are imposed on other possible wh_words (i.e.
“where”, “whose”, “describe”, “when”, “why”, “name”, and “what”) */

37 main_verb← Extract Main Verb from Syntactic Map ;
38 auxiliary_verb← Extract Auxiliary Verb from Syntactic Map ;
39 for verb in [ main_verb, auxiliary_verb ] do
40 if verb has Type Defined then
41 return Class associated with Type;
42 if verb has WSD Type Defined then
43 return Class associated with WSD Type;

44 if head_noun_class is None then
45 return (“ENTY”, “other”)
46 return head_noun_class

Algorithm 2: A Simplified Algorithm showing the Mapping of the Syntactic Map to Question Classes
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Question Correct Class Classified As Reason

What are the twin cities? LOC city DESC def We classify both these as
definitions because we
(correctly) identify “twin cities”
and “speed of light” as entities.
The presence of the word “the”
however requires information
about the entity instead of a
definition for the entity - a rule
that requires to be added.

What is the speed of light? NUM speed DESC def

What is compounded interest? DESC def DESC desc

Our Wikification system fails to
identify “compounded interest”
to be the same as the entity
“compound interest”.

What is the spirometer test? DESC def ENTY instru

The word “test”, has a natural
verb form so forcing the system
to identify “spirometer” as the
head noun. Some modifications
to the function identifying Verb
Nouns are required to rectify
this.

Table 4.7 An analysis of some of the questions that we fail to classify correctly.
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Answer Selection

This chapter presents work on a system for Answer Selection (Section 2.4) that integrates

fine-grained Question Classification (Section 2.3) with a deep learning model designed for

explainable Answer Selection. We detail the necessary changes to the Question Classification

taxonomy and system, the creation of a new Entity Identification system and methods of

highlighting entities to achieve this objective. Our experiments show that Question Classes are

a strong signal to deep learning models for Answer Selection, and enable us to outperform the

current State of Art in all variations of our experiments except one. In the best configuration,

our MRR and MAP scores outperform the current State of Art by between 3 and 5 points on

both versions of the TREC Answer Selection test set, a standard dataset for this task.

Work on this system was published in the paper “Integrating Question Classification and

Deep Learning for Improved Answer Selection” that was published in the Proceedings of

COLING 2018 (Tayyar Madabushi et al., 2018). The co-authors of this paper are the author’s

supervisors.

5.1 System Overview and Contribution

In working towards a method of integrating QC with AS, we first redefine the taxonomy

provided by Li and Roth (2002) to better suit entity identification, before then modifying
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the Question Classification system developed by Tayyar Madabushi and Lee (2016) to

match this modified taxonomy. We then create an entity identification method to extract

entities belonging to those classes in our taxonomy. Finally, we use different methods of

“highlighting” entities, so this information can be passed on to any model that uses word

embeddings. We use the model developed by Rao et al. (2016), which performs AS, to test

our method.

In addition to showing the significant impact that Question Classification has on Answer

Selection, we make several datasets available so others might exploit QC in Question

Answering tasks including a Question Classification API that reflects the modified taxonomy.

5.2 Question Classification

Our experiments with using the taxonomy proposed by Li and Roth (2002) showed the need

for changes to allow the classification system to lend itself more easily to Entity Identification

and AS. For one, we found that some categorisations would make entity identification harder.

For example, the question “What’s the world’s longest suspension bridge?” is categorised

under “Location” while we believe that it is more appropriate to consider a bridge an entity.

We base this on the hierarchical classification provided by WordNet (detailed in Section 3.2).

Similarly, we disagree with the prioritisation of the classes provided. Prioritisation is

important as this particular taxonomy does not allow a question to be a part of two classes. As

an example, the question “What country did the ancient Romans refer to as Hibernia?” can be

classified as either belonging to the class “Location:Country” or “Entity:termeq” (Equivalent

Term). While Li and Roth (2002) categorise this question under the first, we categorise it

under the latter, because the question is not about where something is or happens. We also

believe that this choice makes it easier for a downstream QA system.

We also found the need for a new class that constitutes either “Human:Individuals” or

“Human:Groups” (such as companies, teams and universities). This specific requirement is a
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direct result of the restriction that a question must be classified without prior knowledge of the

answer. For example, the question “Who won the Nobel Peace Price in 2012?” is impossible

to classify without knowing if the answer was an organisation (as it was in 2012) or an

individual (as in 2016), even if we were to ignore the possibility of multiple individuals (as

in 2014). To get around this we introduce the class “Human:IndividualOrGroup”. We retain

the classes “Human:Individuals” and “Human:Groups” for instances where the distinction is

clear.

Finally, we find that certain types of entities within certain classes are much more frequent

than others in that class. While this could be because of the specific method we use for

Entity Identification (Section 5.3), we create separate classes for these types of entities so

as to avoid noise in our AS feature generation. We also expand the class “Location:State”

to include the provinces of Canada and the counties of the U.K. We list the taxonomy thus

modified in Table 5.1.

Coarse Fine
ABBR abbreviation*, expansion*

DESC definition*, description*, manner*, reason*

ENTY
animal, body, colour, creation, currency, disease, event, food, instrument, language, letter*,
other*, plant, product, religion, sport, substance*, symbol*, technique, term*, vehicle*,
word*, movie*, book*, extraterrestrial

HUM description*, group, individual, title, individualOrGroup

LOC city, country, mountain, other, state

NUM
code, count, date, distance, money, order, other*, percent, percent, period, speed, temperature,
size, weight, year, volume (Size), volume (Liquid), time, numeric range*

Table 5.1 Question Taxonomy introduced by Li and Roth (2002), with our modifications in
bold (Section 5.2.1) and those classes not used in AS starred* (Section 5.7)
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5.2.1 Modifications to Question Classification

The QC system used by us is an extension of the one presented in Chapter 4. It primarily

involves: a) extracting a Question’s Syntactic Map (a structure defined for holding certain

types of syntactic information), b) identifying the headword of the noun phrase in the

question, while handling Entity Identification and phrase detection, and c) using rules to map

words at different positions in the Syntactic Map to question classes using a hierarchical

structure.

The QA system classifies questions as follows: Consider the question “What is the name

of the actress from England in the movie ‘Titanic’?”. The system identifies its question class

as follows: The question’s parse tree is analysed to generate the Question’s Syntactic Map,

which enables the identification of the headword actress using, what they call, “prepositional

rolling”. This process provides us with the question’s wh-word (“What”), the auxiliary verb

(“is”), and headword (“actress”). This information is used by the system to check for the

existence of a rule that classifies this question. Such a rule is found by matching the noun

“actress” to the rule: ‘occupation.n.01’ and its hyponyms in this section of the question when

the wh-word is ‘what’ indicate that the question class is hum:ind.

These rules are manually defined using sets of WordNet synsets they call Types. Types

are defined by manually picking specific synsets within WordNet and associating them and all

their hyponyms to a particular question class based on where in a question they appear. In the

previous example, the relevant Type is the word occupation and all hyponyms of the synset

‘occupation.n.01’. Similarly, the synsets ‘people.n.01’, ‘organization.n.01’, ‘university.n.01’,

‘company.n.04’, ‘socialgroup.n.01’, and all of their hyponyms are assigned to the question

class “Human Group”.

We describe below some elements of the system described in Chapter 4 which were

subsequently modified, a necessity given our changes to the taxonomy.
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5.2.2 Word Sense Disambiguation and Rule Extensions

A primary difficulty in identifying the specific rule to use once the correct head of the question

has been identified arises due to the polysemous nature of some words. For example, the

question “What rank did you achieve in the test?” and the question “What rank did she

achieve in the military?” both have the same headword “rank” but differ in the meaning of

that word (position in ordering versus military status such as captain). The question class

assigned to each of these question must also change based on these meanings (Number:order

versus Human:title).

As described in Chapter 4, words useful in identifying the question class are often nouns,

as in the case of the question “What is the name of the actress in the Titanic?”. However,

such words, useful in defining the question class, need not always be a noun. In the case of

the question “How much does the President get paid?”, for example, it is the adverb “much”

which allows us to infer that the expected answer is a number and additionally, the word

“paid” allows us to infer that the number represents money hence resulting in the question

class “number:money” as opposed to the question class “number:weight” as in the case of

“How much does the Big Ben weigh?”

Rules defined by the QC system map sub-trees in WordNet to specific question classes.

We make changes to the rules to align the classification of questions with the modifications

we make to the taxonomy (Table 5.1) and add further rules where possible to cover a larger

section of WordNet. Additionally, there are instances wherein the system makes use of

certain heuristics to find the appropriate rule to use, as in the case of questions starting with

“How much . . . ” which sometimes leads to classification errors. To mitigate this problem, we

modify the system to return a possible second class when there is ambiguity.
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5.3 Named Entity Recognition

Given that our objective is to “highlight” all entities in candidate answers that belong to the

class assigned to a particular question, we require a method of Named Entity Recognition

(NER) at the same granularity as our taxonomy. Unsurprisingly, there is no off the shelf NER

system that identifies entities with the exact granularity and classes that we classify questions

into. To get around this problem we start by relating entities in text to Wikipedia titles and

subsequently mapping those titles to our classes. This process of mapping entities in text to

Wikipedia titles is called Wikification. The hierarchical tree-structure provided by Wikipedia

helps in mapping a large number of titles to a given class by allowing us to map sub-trees to

classes.

5.3.1 Wikification

Wikification was introduced by Mihalcea and Csomai (2007), as a means of automatic

keyword extraction and Word Sense Disambiguation. It has since been used for a variety of

tasks especially the semantic enrichment of text. A significant advantage of using Wikification

is that entities, once identified, are in a normalised format, namely the title of the linked

Wikipedia article, thus making entity matching (Section 5.4) easier.

While simple entity identification involves the direct matching of phrases to Wikipedia

titles, more advanced versions of Wikification additionally involve mapping phrases to related

titles based on the contents of the Wikipedia article. For example, one might choose to map

the phrase “the first Briton in space” to the Wikipedia article on “Helen Sharman”. We

however, limit ourselves to the simpler version as we are only interested in finding entities

and not concepts.

Typically, Wikification involves the identification of potential entities and the subsequent

matching of those entities with Wikipedia titles. For example, given a sentence, one could

potentially use a Parts of Speech tagger to tag the sentences before then extracting sequences
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of PoS tags that match a predefined set (such as NNP+ or DT*NNP+ and so on). Entities

thus extracted could then be matched with Wikipedia titles.

After experimenting with several off the shelf Wikification tools, we found them lacking

in the ability to work with Wikipedia Disambiguation pages and topic specific pages. For

example, when looking for entities of type “movie” in the sentence “He went to watch the

movie ‘New York”’, we want to be able to match this to the Wikipedia article “New York

(film)” and not “New York (state)” or “New York City”.

5.3.2 Wikification without PoS Tagging

The obvious way to tag entities in text with Wikipedia titles would be to match every possible

phrase in a sentence with every title on Wikipedia. This, however, is impractical as there are

over 13.04 million titles in the English Wikipedia. To get around this we run through the

titles, and for each title, we split it into its constituent words and save the rest of the title

in a file whose name is the first word. Thus, all titles that begin with a particular word are

clubbed into a single file and for those titles that are of length one, we add an empty line into

the corresponding file. This results in just over 2.1 million files each of which are relatively

short and easy to process.

As we sweep through each word in a sentence, we process the file containing Wikipedia

titles starting with the same word, and check to see if it contains entities that match the

current sentence. This greatly speeds up the process of matching titles to the words in a

sentence and provides us with a list of titles that are contained in a given sentence.

We note that this method of Wikification can be used in languages where capitalisation is

dissimilar to English or even those languages wherein there is no capitalisation.
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5.3.3 Wikification to Question Classes

Once candidate answers are Wikified, we are then left with the task of mapping these titles to

the question classes. We do this by first linking each Wikipedia title to the corresponding

DBPedia entry. DBPedia is an attempt to extract structured information from Wikipedia

and provides a list of labels and classes associated with each entry. We use these labels and

classes to map Wikipedia (and so DBPedia) titles to question classes associated with our

taxonomy.

5.3.4 NER without Wikification

We use the Stanford Named Entity Recogniser (Finkel et al.) to identify entities belonging

to the classes “Human Individual”, “Human Group” (such as institutions, universities, etc.),

and “Location Other”, the three classes with compatible granularity. All numeric entities,

such as Number:Money, Number:count, and Number:date are identified using an extensive

list of regular expressions.

5.4 Entity Matching

When grading papers, a good maxim to identify plagiarism is “While there is only one way to

get it right, there are several ways to get it wrong”. We observe that this maxim works because

the probability of two students answering a question incorrectly in the same way is extremely

small, unless of course it’s a trick question. Similarly, the chance of candidate answers having

the same incorrect entity that also match the class of the question is exceedingly small and

machine learning models can make use of this information. To this end, we count the number

of occurrences of each entity across all answer candidates of a given question. This requires

us to be able to match entities that have been written differently, but are in fact the same.
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Entities that have been extracted through Wikification are often normalised “for free.”

However, there is no simple way to get around this problem in the case of entities extracted

through regular expressions, as in the case of numbers and dates where it is common for

sentences to contain approximations. For example, consider the question “How many lives

were lost in the air-crash?”, the answer is contained in all of the following sentences: “253

lives were lost in the air-crash”, “241 passengers and 12 crew died in the air-crash”, and

“around 250 lives were lost in the air-crash”. This problem is further expanded when the

numbers we are dealing with become larger as it is more common for non-technical literature

to approximate large numbers. To get around this we round down all numbers to the nearest

billion, million, hundred thousand, thousand, hundred or ten.

5.5 A Shallow Model for Answer Selection

This section explores a shallow model for AS which follows treditional methods in NLP.

It makes by making use of a modified QC system and a case insensitive entity extraction

system which is used to classify entities into the relevant question classes. Using only this

and a very basic overlap percentage, a SVM is used to achieve Mean reciprocal rank (MRR)

and Mean average precision (MAP) scores of 0.82 and 0.72 on the TREC dataset.

5.5.1 Training Data

One of the problems we face is in the lack of training data in a format that is usable.

Unfortunately, the clean training data (the training data cleaned as described below), which

has been shown to produce better results does not contain enough data split reasonably across

the question classes that we use. To get around this we extract 100 training instances from the

raw automatically tagged data while ensuring that the questions we pick have a reasonable

distribution across our question classes. Each of these instances are then manually cleaned to
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ensure that all incorrectly tagged sentences, which exist in this dataset due to the automated

creation method used to generate it, are removed.

5.5.2 Model Details

So far our work has focused on classifying questions and then extracting, from candidate

answer sentences, all entities that belong to that class. For example, if we are given the

sentence “When did the Beatles release their first album?”, we would first identify that this

question belongs to the class “Number:date” and subsequently use methods described in

Section 5.3 to extract all dates from candidate sentences. In this section, we describe the

model used to actually select specific sentences as containing the answer.

Baseline model

Before moving forward with using question classes for AS, we create a baseline word overlap

model. The model simply assigns the percentage overlap of words in the question and a given

candidate answer as the likelihood of that candidate answer being the one containing the

answer. There is however, one caveat: Instead of using every word contained in the question,

we only use those words that are not stop words and have a Wikipedia title associated

with them. We note that this isn’t much of a restriction as nearly every word has at least a

disambiguation page on Wikipedia. We evaluate this model using the same trec_eval program

and it achieves an MRR score of 0.66. This low score is expected as this particular dataset

is designed to require systems more complex that those using simple bag-of-words. Again

as expected, this model performs more poorly than the baseline models presented by Wang

et al. (2007) when introducing this task.
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Extracting Features from Entities

Given a particular question, and a corresponding set of answer candidates we have so far

generated a list of entities that match the question type in each answer candidate along with

the percentage of overlap between the question and each of the answer candidates.

Using this we create the following features for each answer candidate: 1. The number of

answer candidates available for the question under consideration. 2. the number of answer

candidates that contain entities of the relevant type. 3. the maximum overlap percentage of

answer candidates that contained entities. 4. whether or not an entity that is part of the answer

candidate with the highest overlap is contained in this answer candidate. 5. the overlap

percentage 6. the maximum overlap percentage (including answer candidates without any

entities) 7. whether or not this answer candidate contains the most frequently occurring entity.

8. whether or not this answer candidate contains the entity with the highest average overlap

across all answer candidates.

Additionally we find the entity contained in the answer candidate under consideration

with the maximum occurrences across all answer candidates and add the following features:

9. The number of occurrences of this entity 10. the percentage of all answer candidates that

this entity occurs in 11. the percentage of answer candidates with entities that this entity

occurs in 12. the total overlap percentage of all answer candidates that this entity occurs in

13. the total overlap percentage of all answer candidates that this entity occurs in divided

by the total number of answer candidates. 14. the total overlap percentage of all answer

candidates that this entity occurs in divided by the number of answer candidates with entities.

15. the total overlap percentage of all answer candidates that this entity occurs in divided by

the number of answer candidates with this entity. 16. the maximum overlap percentage of all

answer candidates with entities
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SVM Parameters

We train a simple SVM with just these sixteen features and a linear kernel. We use the SVM

model provided by scikit-learn (Pedregosa et al., 2011) with C, the penalty of the error term

set to 70, and the tolerance for stopping set to 0.0001. We additionally enable probability

estimates, which are calculated using Platt scaling. scikit-learn documents this as the logistic

regression on the SVM’s scores, fit by an additional cross-validation on the training data.

We note that not all question classes have entities that can easily be identified. For exam-

ple, it is extremely difficult to extract relevant entities for questions of the class “Entity:Other”

as every entity is a potential candidate, and impossible for the class “Description” (as there

is no entity but a description that is being sought). For such classes, we simply pass on the

baseline (percentage of word overlap) as the score for a given candidate sentence.

5.5.3 Results of the Shallow Model

We list the results achieved by our method alongside prior results on the same dataset in Table

5.2. We note that unlike Wang and Ittycheriah (2015), our sentence similarity is based on

an extremely weak baseline, so as to measure the true impact of QC. The baseline achieves

scores of 0.6113 and 0.6686 for MAP and MRR respectively and the system achieves scores

of 0.7186 and 0.8164 for MAP and MRR. Except for the work by Wang and Ittycheriah

(2015), all the other systems use a models based on word embeddings.

When no Entities Exist

As noted earlier, not all questions classes have entities that can easily be identified (Section

5.5.2). So as to measure the accuracy of this system on those questions we can identify

entities for and those that we cannot, we report the MAP and MRR scores for only those

questions that we do identify entities for.
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Reference MAP MRR

Baseline 0.6113 0.6686

All Data 0.7186 0.8164
Only Entities 0.7151 0.8113
Pruned Data 0.6978 0.7975
All Data Fixed 0.7284 0.8276

Wang and Ittycheriah (2015) 0.746 0.820
Tan et al. (2015) 0.728 0.832
dos Santos et al. (2016) 0.753 0.851
Wang et al. (2016) 0.771 0.845
He et al. (2015) 0.777 0.836
Rao et al. (2016) 0.801 0.877
Wang et al. (2017) 0.802 0.875

Table 5.2 Results from this work, including “All Data Fixed”, which represent results for
the corrected test data (Section 5.5.3), alongside prior results on the same dataset, with
comparable methods in bold.

Surprisingly, we achieve lower scores of 0.7151 and 0.8113 for MAP and MRR, when

considering only those question for which we identify entities. This implies that the weak

baseline is actually a good method for Answer Selection for questions that belong to certain

classes. We believe this to be a possibly useful guide in focusing future research into Answer

Selection and so Question Answering.

Eliminating Answer Bias

When picking sentences to include as answer candidates, Wang et al. (2007) search for all

sentences that either contain any non-stop word in the question or any of the possible answers.

Since we use the number of entities as one of our features, it is important to ensure that the

method of extracting candidate sentences does not skew our results.

To ensure we avoid this bias, we first extract all entities from the questions, and then

prune the candidate sentences for each question based on whether or not they contain the
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the entities identified. We make exceptions for those entities that are implied as a result of a

perspective bias in the data. For example, the location “United States” is often missing but

assumed.

With these modifications, we achieve MAP and MRR scores of 0.6978 and 0.7975. The

fact that the scores drop is not surprising, however, it must be pointed out that other systems

enjoy the same advantage.

Data inconsistencies

There are some questions and answer candidates that are incorrectly tagged in the Answer

Selection test set. For example, the question “What years did Sacajawea accompany Lewis

and Clark on their expedition?” has, amongst its candidate sentences, the following two

sentences: “the coin honors the young woman and teen-age mother who accompanied

explorers Meriwether Lewis and William Clark to the pacific ocean in 1805”, and “in 1804,

Toussaint was hired by Lewis and Clark, not for his own skills but for those of Sacagawea.”

While the first candidate answer is marked as one containing the answer the second is not

marked as such.

While this is the only error of this kind, we found several other sentence candidates

similarly marked as containing the answer when they do not contain important elements of

the question. For example, the question “How long are Syrian presidential terms?” has the

positively marked candidate sentence “parliament formally announced that bashar assad ’s

swearing-in ceremony will be on july 17 , after which he will embark on a seven-year term

that is full of risks.” While this does contain the answer, it requires a step in reasoning which

we believe takes away from what is being tested here. We release a full list of such sentences

from all test sets.
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Restrictions Impossed on the Shallow Model

We note that we intentionally do not include additional methods to attempt to improve the

performance of this system. As an example, we could replace the simple percentage overlap

used in this work with the sentence alignment used by Wang and Ittycheriah (2015), or

a similarity measure based on word vectors as do Yu et al. (2014). Similarly, we could

have heavily exploited phrases contained within candidate sentences to further boost our

performance. We work with these limitations so as to measure the true impact of QC.

5.5.4 Error Analysis - the Shallow Model

One source of errors stems from our choice of Entity Identification. Since we limit ourselves

to Wikipedia entities, no entities are identified for the question “Whom did Eileen Marie

Collins marry?” as the positive answer candidate contains the name “pat youngs”, a name we

do not find on Wikipedia. We note that this would not have been a problem, had the answer

candidates been correctly capitalised. Additionally, this error could have been avoided if the

answer candidate contained his full name “patrick youngs”, as that would have enabled us to

identify Patrick as a common given name (Section 5.3.2).

Other errors stem from an expected source: The use of a weak similarity measure. Yu

et al. (2014) point this out when detailing examples that their system can handle, but pure

bag-of-words systems cannot: Consider the question “When did James Dean die?” and the

two corresponding answer candidates “In [date], actor James Dean was killed in a two-car

collision near Cholame, Calif.”, and “In [date], the studio asked him to become a technical

adviser on Elia Kazan’s ‘East of Eden’ starring James Dean”. Our system is unable to

distinguish between the two as both contain entities of the required answer type, forcing us

to rely on the weak similarity measure.

Interestingly though, we are successful when working with an example that they say they

are unable to work with due to the requirement of deep understanding: Consider the question
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“What is the name of Durst’s group?” and the corresponding answer candidate, “Limp Bizkit

lead singer Fred Durst did a lot before he hit the big time”. Our system identifies the question

class of this question, based on the head noun group, as “Human:Group”, and subsequently

extracts the entity “Limp Bizkit” as an entity of the corresponding type.

5.6 The Deep Learning Model

In creating the deep learning model, we use the Answer Selection model developed by

Rao et al. (2016) who rank candidate sentences using a Multi-Perspective Convolutional

Neural Network (He et al., 2015) and a triplet ranking loss function which uses triplets of the

question paired with a positive and a negative candidate answer. While other methods model

this problem as a pointwise classification problem (He and Lin, 2016; Severyn and Moschitti,

2015), this method models the problem of Answer Selection as a pairwise ranking problem.

This involves developing representations for positive and negative answer candidates paired

with the question, the primary reason for us choosing this model.

Yet another advantage of this method is that it can make use of existing pointwise models

to generate representations which can then be fed into the triplet ranking function. The

authors make use of two such pointwise models, one that uses a sentence-level model (He

et al., 2015) and the other that uses a word-level model (He and Lin, 2016). We refrain from

elaborating on these methods and refer to the reader to the original works.

We make use of the sentence-level model1 and introduce new representations for entities

(Section 5.6.1) which requires us to modify them with answer candidates. The model is

additionally initialised with the GloVe word embeddings (Pennington et al., 2014) which are

also updated during training.

1https://github.com/castorini/Castor
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5.6.1 Highlighting Entities

Having extracted and normalised entities that are contained in each of the answer candidates,

we are faced with the task of highlighting these entities within the answer candidates. Before

we do this however, we perform some prepossessing steps. We discard any entities that

also appear in the question as such entities are unlikely to be the answer. For example, the

question “Who is the author of the book, ‘The Iron Lady: a biography of Margaret Thatcher”’

has, as an answer candidate, the sentence “The Iron Lady; a biography of Margaret Thatcher

by Hugo Young” in which both “Margaret Thatcher” and “Hugo Young” are entities that

match the question class, namely “Human Individual”. The entity “Margaret Thatcher”,

however, is discarded as it is also contained in the question.

For each question we count the number of occurrences of each entity across all candidate

answers and if the most frequently occurring entity occurs more than twice (which was

empirically determined) the number of times the second most frequently occurring one, we

pick the first as the maximal entity. For those questions where this is not the case, we pick no

maximal entity.

We also create four new “words”, max_entity_left, max_entity_right, entity_left, and

entity_right, which are strings that are not contained in the vocabulary, along with associated

word vectors which are randomly initialised with entries between -0.05 and 0.05 and are of

the same length as the GloVe word embeddings (300). We then add these embeddings to our

embedding dictionary and the words to the vocabulary.

Entities are highlighted in the answer candidates by inserting the words max_entity_left

and max_entity_right on either side of maximal entities, and entity_left and entity_right

around other entities. We also include entity_left and entity_right at the end of the question

and the “words” max_entity_left and max_entity_right at the end of questions that contain

maximal entities. We call this method of highlighting bracketing.
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A second method of highlighting entities in candidate answers is to replace the entity

with a word, a method we call replacing. To avoid creating two new words for this method,

we reuse two of the four words used above: max_entity_left and entity_left. Table 5.3 details

the modifications made to an example question and candidate answer using each of the above

methods.

Method Question Answer Candidate

Original Who is the author of the book, ‘The
Iron Lady: a biography of Margaret
Thatcher’

in ‘The Iron Lady,’ Young traces the winding staircase of
fortune that transformed the younger daughter of a provincial
English grocer into the greatest woman political leader since
Catherine the Great.

Bracketing Who is the author of the book, ‘The
Iron Lady: a biography of Mar-
garet Thatcher’ max_entity_left
max_entity_right entity_left en-
tity_right

in ‘The Iron Lady,’ max_entity_left Young max_entity_right
traces the winding staircase of fortune that transformed the
younger daughter of a provincial English grocer into the
greatest woman political leader since entity_left Catherine
the Great entity_right.

Replacing Who is the author of the book, ‘The
Iron Lady: a biography of Mar-
garet Thatcher’ max_entity_left en-
tity_left

in ‘The Iron Lady,’ max_entity_left traces the winding stair-
case of fortune that transformed the younger daughter of a
provincial English grocer into the greatest woman political
leader since entity_left.

Table 5.3 Entities highlighted in answer candidates using two different methods. The example
assumes that the entity “Young” is a maximal entity.

5.7 Empirical Evaluation

Having described our method of Question Classification, Entity Identification and Entity

Highlighting, we next evaluate our method on the task of AS using different Highlighting

methods and training data.

The training set commonly used for this task consists of two sets: The first consists of one

hundred manually examined questions and corresponding answers candidates and the second,

an automatically generated set consisting of just over 1200 questions. We found the manually

inspected, and hence higher quality test set to be too small for use in this task. However, we

also found that the automatically generated training set contained several inconsistencies.
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To prevent noise, we discarded any questions with answer candidates that contained more

than one false positive. We similarly discarded questions from the development set. Thus

cleaned, we were left with 1164 questions in the training set and 76 and 60 questions in the

Raw and Clean versions of the development set respectively. The development data is what

the learning model is optimised on before the best performing model is used to evaluate the

test data.

To ensure that our results are comparable to those published by others, we make no

changes to the test data.

Some question classes cannot have entities highlighted, as in the case of “Description”

and “Definition”. Some other question classes do not have Entity Identification implemented

as we found it impossible to identify all possible elements of the class, as in the case of

“Vehicles”. We call such questions unhighlighted questions and the rest highlighted questions.

For each of the Clean and Raw versions of the data, we run the model on a) unhigh-

lighted data, b) data highlighted using bracketing, c) data highlighted using replacement,

d) unhighlighted data and highlighted data using bracketing combined, and e) unhighlighted

data and highlighted data using replacement combined. In cases where we split the data into

highlighted and unhighlighted sections, the results are combined to find the MRR and MAP

scores of the complete data. The model on data without entities highlighted (as presented

in Rao et al. (2016)) is the baseline. We also calculate the MRR and MAP scores for the

baseline for each of these variations as we change the training data in each case. We use the

same hyper-parameters as those provided in the implementation of the work by Rao et al.

(2016). We include the highlighted versions of the training, development and test data for

each of the variations above along with details of the hyper-parameters used, the trained

models and the output as part of the supplemental material. We present our results in Table

5.4.
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5.7.1 Result Analysis

The use of question classes embedded in candidate answers outperforms the current state

of art in literature in every case except one. This result (Number 10 in Table 5.4) is an

anomaly that we attribute to over-fitting as we perform no hyper-parameter tuning. The strong

performance of the baseline on the unhighlighted data (Sr. No. 1) is expected as answer

candidates that are descriptive in nature (as is the case for questions belonging to the classes

“Description”, “Definition”, etc., which also do not have entities identified) must necessarily

have a larger overlap with the question. Once again, we ascribe the low performance of the

corresponding unhighlighted baseline on the Clean Version (Sr. No. 8) to over-fitting.

The highlighting method of replacement performs better than bracketing except in the

case of the anomaly. We believe this is because Named Entities, with their limited frequency,

carry little information. Additionally, the replacement of entities that are phrases with a

single frequently occurring word could improve sentence representation.

We expected the combination of the model independently trained on unhighlighted and

highlighted data to perform better than that trained on the combination. While this is the

case for the Raw version of the data, it is not the case for the Clean version. As in the case

of the anomaly (Sr. No. 10), it is impossible to say if this is a result of over-fitting without

performing hyper-parameter tuning on all ten of the models we present.

We also experimented with training different models for each of the course classes. We

did this by extracting subsets of the training, development and test sets belonging to each of

the course classes (“HUM”, “LOC”, . . . ), training the model on the training subset optimised

on the development subset, and testing it on the test subset. We found these results to

be surprisingly low, and believe this to be a result of deep learning models gaining more

from increased data rather than homogenous data. Homogeneity in data might, in fact,

lead to overfitting and hence be detrimental. These results are consistent with results in
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work by Kyashif (2018) who used the QC system described in this work in task-based and

commonsense QA, where a similar subdivision led to poorer performance.

As part of this work we release the following datasets1

1. We release 3,500 of the total 5,500 training questions along with the 500 test questions

originally released by Li and Roth (2002) manually updated with our classification.

2. We release the manually verified question classes for all 1500 questions in the AS task.

3. From the questions contained in the AS task, we release the list of entities identified

for each answer candidate for the complete test set and for a highlighted training set of

649 questions.

4. We also make available an Application Programming Interface (API) to the modified

Question Classification system we describe in this work2.

5.7.2 Additional advantages

Unlike other systems, a significant advantage of the system presented in this work is the

fact that, not only does the system succeed in Answer Selection but in most cases can also

extract the specific factoid answer, when one is present. When highlighting is possible and a

maximal entity exists (as is the case in 60 of the 68 questions in the clean test set), such a

maximal entity is nearly always the answer.

5.8 Error Analysis

One of the biggest source of errors tends to be incorrect entity tagging. This is especially so

in the case of dates where we tag the date and the year independently thus allowing for the

tagging of entities in candidate answer that only mention the year. Unfortunately, this often

leads to incorrectly identified maximal entities when both the date and the year are present.

1Download from: www.harishmadabushi.com/research/answer-selection/
2API available at: www.harishmadabushi.com/research/questionclassification/
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In hindsight, we believe a better approach to dates would have been to combine sequential

entities before entity matching, so as to capture exact dates, such as “13 October 1997” as a

single entity rather than two different entities, one consisting of the day and month and the

other of the year.

A similar source of errors occurs when processing the names of individuals, where

common ways of shortening names cause errors in both the entity identification and the entity

matching steps. For example, the ex-CEO of GE, Jack Welch, is referred to as GE-Welch

and John Welch in some answer candidates.

When a candidate answer has too many entities of the required type, it is often mis-

classified. For example, the candidate answer “on its billions of kilometres flight toward

Saturn, Cassini is scheduled to loop its path around the Venus, the Earth and Jupiter to get the

gravity boost needed for closing in onto its destination” for the question “What is Cassini’s

destination?”, contains a large number of planetary objects diluting the signal generated

by the entity. We believe the solution to this lies in increasing the granularity of the QC

taxonomy.

There are some completely unexpected sources of errors as in the case of the question

“Who established the Nobel Prize awards?”, where all entities that contain the answer (“Alfred

Nobel”) are discarded as they are contained in the question. Once again, a more sophisticated

method of establishing which entities are discarded could reduce errors of this kind.

Finally, there are some questions and answer candidates that are incorrectly tagged in the

Answer Selection test set. For example, the question “What years did Sacajawea accompany

Lewis and Clark on their expedition?” has, amongst its candidate sentences, the following

two sentences: “the coin honors the young woman and teen-age mother who accompanied

explorers Meriwether Lewis and William Clark to the pacific ocean in 1805”, and “in 1804,

Toussaint was hired by Lewis and Clark, not for his own skills but for those of Sacagawea.”

While the first candidate answer is marked as one containing the answer the second is not
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marked as such. While this is the only error of this kind, we found several other sentence

candidates similarly marked as containing the answer when they, in fact, do not. Despite this,

we make no modifications to the test set.

5.9 Summary

This chapter presented a method of Answer Selection that makes use of a slightly modified

version of the Question Classification method presented in the previous chapter (Chapter 4).

We additionally show how Types can be used for entity identification and classification.

This method significantly outperforms the existing state of the art and shows that methods

that make use of both linguistic analysis and deep learning can be potent. The next chapter

provides an overview of the contributions of this work and the possible ways in which they

can be extended in the future. We present one possible method for using this research for the

creation of an end-to-end Question Answering system in Section 6.3.5.
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Baseline This Work
Data
ver-
sion

Sr.
No.

Question
Class

Highlight
Method Train # Test # MRR MAP MRR MAP

R
A

W T
hi

s
W

or
k

1 unhigh-
lighted N.A. 515 13 (0.8065) (0.8462) N.A. N.A.

2 highlighted bracketing 649 82 (0.7583) (0.8179) (0.8124) (0.8304)

3 highlighted replace-
ment 649 82 (0.7583) (0.8179) (0.8174) (0.8293)

4 Combining results from 1 & 2 0.8116 0.8326

5 Combining results from 1 & 3 0.8262 0.8422

6 combined bracketing 1164 95 0.7783 0.8386 0.806 0.8316

7 combined replace-
ment 1164 95 0.7783 0.8386 0.8362 0.8625

Reported Baseline Performance (Rao et al., 2016) 95 0.780 0.834

Implementation Best 95 0.7904 0.8223

Prior State of Art (Rao et al., 2016) 95 0.78 0.834

C
L

E
A

N T
hi

s
W

or
k

8 unhigh-
lighted N.A. 515 6 (0.6621) (0.7222) N.A. N.A.

9 highlighted bracketing 649 62 (0.7449) (0.7926) (0.8354) (0.8679)

10 highlighted replace-
ment 649 62 (0.7449) (0.7926) (0.6991) (0.8211)

11 Combining results from 8 & 9 0.8201 0.855

12 Combining results from 8 & 10 0.6958 0.8123

13 combined bracketing 1164 68 0.7713 0.8368 0.8324 0.862

14 combined replace-
ment 1164 68 0.7713 0.8368 0.8647 0.9039

Reported Baseline Performance (Rao et al., 2016) 68 0.801 0.877

Prior State of Art (Shen et al., 2017) 68 0.822 0.899

Table 5.4 Results for each of the different highlighting methods on the Raw and Clean data
versions. “Reported Perfomance” indicates the performance reported by Rao et al. (2016)
when using the sentence-level model (Section 5.6) which is our baseline and the model that
we adapt. “Implementation Best” represents the performance of the same model on the
implementation that we use, and “Prior State of Art” represents the prior State of Art reported
in literature for this dataset. Results in parentheses represent results on a subset of the test
data.
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The incredible success of deep learning methods has led to their increased use across tasks

including in natural language processing. Deep learning methods, however, suffer from a

lack of transparency. So far, making deep learning systems transparent has been seen as a

requirement for understandability but not accuracy.

Work described in this thesis integrates linguistic information into deep learning methods

making deep learning more transparent while also achieving higher accuracy. This work

shows that the decades of work that exists in linguistics, which was ignored as a consequence

of the rise of deep learning, can be integrated into deep learning systems to improve results

on tasks while also making methods easier to “understand” and debug.

6.1 Contributions

This section highlights the contributions made by this thesis towards improving Question

Answering systems.

6.1.1 A New Method for Learning

This work provided a novel method for creating rules and generalising them through a method

we call ArCH learning that makes use of what we call Types. We note that this is a more
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precise, if labour intensive, version of semantic similarities provided by word embeddings.

However, the added precision provided by such flexibility in defining rules results in a system

for Question Classification which is not only transparent, but also superior to all existing

systems. There are other good reasons for using Types in complex tasks as described in

Section 3.5.

An exciting avenue of future exploration is a method of automating the process of defining

Types using, amongst other things, word embeddings and deep learning to bring together the

advantages of Types with those of deep learning. We describe this in more detail in section

6.3.1.

6.1.2 Semantic Text Similarity

Types provide a way of expressing a Concept making them useful in differentiating between

subtle ideas that are instrumental in finding the degree of similarity between two sentences.

Section 2.2 provided details on our contribution to the task of Semantic Text Similarity

wherein we were able to achieve significant improvements through the use of Types, Surprise

and Phrase Linking. Section 6.3.2 details ways in which this research can be built upon.

6.1.3 Question Classification

Chapter 4 presented a purely rule-based system for QC which exploits decades of research

into the structure of language and Concepts. A purely semantic system, without a learning

component, leads to a system wherein, although the definition of various rules is cumbersome,

each additional rule will always increase the number of kinds of questions that can be

classified while maintaining a perfect recall. Systems that depend on machine learning must

sacrifice recall to ensure that they avoid over-fitting. The use of Types also allows us to define

classes for a vastly larger number of words than those that are manually defined (e.g. 246

manually selected words in various Types get translated into the definition of 39,055 rules).
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We also note that these are a common and vital kind of questions, which are similar to those

handled by most modern smartphone interactive systems such as Google Now (Ristovski,

2016).

As part of this work, a simple to use Application Programming Interface (API) 1 is made

available so other QA systems may benefit from this work. Several researchers from around

the world have already made use of this API to classify over 70,000 questions. We detail

possible future directions of research related to Question Classification in Section 6.3.3.

6.1.4 Answer Selection

Chapter 5 presented a method of Answer Selection that first required us to redefine the

QC taxonomy provided by Li and Roth (2002), modify the Question Classification system

previously developed (Chapter 4, Tayyar Madabushi and Lee (2016)) to ensure that it matches

this modified taxonomy, create an entity identification method to extract entities belonging to

those classes in our taxonomy, and finally, to use different methods of highlighting entities,

so this information can be passed on to the Answer Selection model developed by Rao et al.

(2016).

Our experiments show that this method of Answer Selection outperforms the previous

state of the art in all variations except one. In the best configuration, our MRR and MAP

scores outperform the current state of the art by between 3 and 5 points on both the Raw

and Clean versions of the TrecQA Answer Selection test set. The relatively small size of

this dataset combined with the rather high accuracy achieved by the current state of the art

systems highlights the need for research in the field of AS through QC to move to other

datasets. One challenge in doing so could be the lack of QA datasets with QC annotations.

We hope that our release of the QC API as part of this work will help in this regard. We

describe possible ways of extending this work in Section 6.3.4.

1API available at http://www.harishmadabushi.com/research/questionclassification/
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6.2 Research Questions: Answers and Discussion

This section explores the research questions introduced in Section 1.6 and how the work

presented herein answers these questions. The first research question related to the possibility

of methods that do not use deep learning outperforming deep learning methods:

• Research Question 1: Has the success of deep learning methods made it impossible

to improve upon the state of art of various NLP tasks without the use of deep learning?

This work has shown conclusively that this is not the case. Work presented in Chapter 4

significantly improved upon the accuracy of question classification, well beyond anything

machine learning models were able to achieve. This is significant as it shows that deep

learning is not the only way forward and that an exploration of linguistic structure remains

beneficial.

The second research question related to an alternate method of generalisation as this

aspect of deep learning was not being exploited to the extent it was in other fields:

• Research Question 2: Given that the success of deep learning methods lies in their

ability to abstract learning, and that learning abstraction is not where the gains in NLP

stem from, are there other forms of generalisation that might be more suitable to NLP?

Chapter 3 presented Types, a novel method of generalisation that is able to generalise

natural language information. We have additionally shown in Section 3.3 that there are

parallels between Types and Distributed Word Embeddings. While there is more work

required to show that Types are a better form of generalisation than deep learning in the

context of NLP, this work has shown that Types do have the potential to be more effective in

some tasks, such as Question Classification (Chapter 4).

The final research question pertained to the integration of information extracted through

linguistic analysis into deep learning models:
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• Research Question 3: How can features discovered through the analysis of language

and language structure be fed into deep learning models without fundamental changes

to those models?

This work has shown that “Highlighting”, detailed in Section 5.6.1, is an effective method

of passing additional information to deep learning models. In addition to being able to pass

on additional information, our work has shown how such additional information can be

incredibly effective in improving the accuracy of the original deep learning model.

6.3 Future Work

This section details possible future directions for the research presented in this thesis. We

start by exploring how Types can be extended and generalised, and learning Types can

be automated, before describing an end-to-end Question Answering system that can be

developed using components described in this work.

6.3.1 Extending Types

As described in section 3.4, Types are specific to the task at hand, and this flexibility has

the advantage of allowing individual tasks to handle information at different granularity.

However, we hope to create Types modified in such a way as to allow dynamic selection of

granularity. This modification will remove the need to redefine Types for individual tasks

and allow for the creation of Universal Types.

Simultaneously, we would like to automate ArCH learning (Section 3.4.1), the process

used to create Types. This will enable the use of Types in niche domains that use specialised

vocabulary in addition to aiding in the creation of Universal Types. This automation could be

achieved through the use of word embeddings and deep learning methods.
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6.3.2 Semantic Text Similarity

Our experiments with the use of Types in Semantic Text Similarity were limited to an

exploratory study that used coarse Types. Incorporating Types with a finer granularity into

Semantic Text Similarity and integrating it with deep learning methods is the next step in

exploring the use of Types in Semantic Text Similarity and we hope to pursue this in future.

6.3.3 Question Classification

Although the method of Question Classification presented in this work has focused on a

particular kind of question, we believe that a similar method can be applied to classifying

questions belonging to different kinds of questions such as yes/no question, and we intend to

extend our work to include those kinds of questions. Multiple-choice questions, however,

provide a different set of challenges.

Additionally, the use of question structures, which have the potential to be extended to

sentence structures, in conjunction with Concept creation, provides a novel way of creating a

Word Sense Disambiguation system. This work might have the potential to lead to a system

that can, at least in the most common cases of English language usage, disambiguate word

senses.

6.3.4 Answer Selection

One possible avenue of future research in extending our work into Answer Selection is

in implementing and testing this method on different datasets including WikiQA, while

also increasing the number of classes in the question taxonomy and the number and kinds

of entities identified by the Entity Identification component of the system. As in the case

of Question Classification an obvious extension of our work is in creating an end-to-end

Question Answer system, as described in the next section.
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6.3.5 End to End Question Answering

Given that this work has focused on both Question Classification and Answer Selection,

a natural and impactful direction for future research lies in the use of these methods in

the development of an end to end Question Answering system. The most obvious way

of achieving this will be in modifying a Question Answering system that relies on web

redundancy (Section 2.1.4) to exploit both the Question Classification and Answer Selection

methods detailed in this work.

A question could be trivially transformed into a web search query by stripping away stop

words before then feeding such a search query to a search engine. Results from the search

engine could be analysed for redundancy to extract candidate answers. The question would

also be run through the Question Classification system, and the resultant question class and

the previously extracted candidate answers could be fed to the Answer Selection system

which would extract the answer. Figure 6.1 provides an overview of this process.

Fig. 6.1 A representation of an end to end Question Answering System based on this work
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A
STS Type Definitions

A.1 Non-Noun Type Definitions

The Table below details Type definitions for all POS other than Common nouns.

Type POS and Tokens
Pronouns PRP, PRP$
Proper Nouns NNP, NNPS
Foreign words FW
All Noun NN , NNS
Numbers CD
Modal MD
Predeterminer PDT
Wha Words WDT, WP, WP$, WRB
verb_pos VB , VBD, VBN, VBP
verb_vbg VBG
verb_vbz VBZ
Adjectives JJ , JJR, JJS
Adverbs RB , RBR, RBS
Sentence Separators . , !
Question Mark ?
Ignored CC, DT, EX, IN, LS, PDT, POS, RP, SYM, TO, UH

A.2 Noun Type Definitions

The following table shows all Termination Concepts used, and associated (Common) Noun

Types.
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A.2 Noun Type Definitions

Termination Concept Type

person.n.01 person_r1

group.n.01 person_r2

social_group.n.01 person_r2

body_part.n.01 person_r3

animal.n.01 animal_r1

plant.n.02 plant_r1

body_of_water.n.01 thing_r2

natural_object.n.01 thing_r3

living_thing.n.01 animal_r2

organism.n.01 animal_r2

food.n.01 thing_r1

food.n.02 thing_r1

cognition.n.01 idea_r1

motivation.n.01 idea_r1

agent.n.03 animal_r3

causal_agent.n.01 animal_r3

communication.n.02 thing_r1

writ-

ten_communication.n.01
thing_r1

act.n.02 thing_r1

social_event.n.01 thing_r1

location.n.01 place_r1

land.n.04 place_r2

geological_formation.n.01 place_r3

natural_process.n.01 thing_r4

organic_process.n.01 thing_r4

natural_phenomenon.n.01 thing_r4

part.n.03 thing_r3

Termination Concept Type

relation.n.01
ab-

stract_r1

flow.n.01 move_r1

attribute.n.02 thing_r3

surface.n.02 thing_r3

happening.n.01 thing_r5

causal_agent.n.01 thing_r2

measure.n.02 thing_r5

change.n.06 thing_r5

phenomenon.n.01 thing_r5

ability.n.02 thing_r1

quality.n.01 thing_r1

degree.n.01
ab-

stract_r1

artifact.n.01 thing_r1

substance.n.04 thing_r3

part.n.02 thing_r1

catch.n.04 thing_r1

processing.n.01 thing_r1

substance.n.07 thing_r3

event.n.01 thing_r2

matter.n.03 thing_r6

entity.n.01 thing_r6

process.n.06 thing_r5

thing.n.08 thing_r6

physical_entity.n.01 thing_r6

object.n.01 thing_r6

thing.n.12 thing_r6

abstraction.n.06
ab-

stract_r2

solid.n.01 thing_r6
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A.3 Weights

A.3 Weights

We list below the various combinations of weights we assign to each Type to generate

Similarity Scores for each of our “Methods”. Although we try several other combinations,

we list here only those that we included in our submission.
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0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 3 2 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 2 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 5 2 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 5 3 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 500 500 0 0 0 0 0 50 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 20 20 0 0 0 0 0 20 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 100 20 0 0 0 0 0 20 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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A.3 Weights

0 1000 20 0 0 0 0 0 20 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 20 30 0 0 0 0 0 20 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 10 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 50 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 10 5 5 0 0 0 0 3 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
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Pooling, 25

Possessive Unrolling, 63

Preposition Rolling, 63

Prototype Theory, 35

Question Classification, 57

Question Taxonomy, 23

Rectified Linear Units, 25

Semantic Networks, 35

Semantic Text Similarity, 46

Semantic Triplets, 35

Syntactic Maps, 59

Template Matching for QA, 12

Tree and Graph Matching for QA, 15

Triplet Ranking Loss Function, 29

Tuple Based Question Answering, 17

Types, 34
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