22 research outputs found

    What is Holding Back Convnets for Detection?

    Full text link
    Convolutional neural networks have recently shown excellent results in general object detection and many other tasks. Albeit very effective, they involve many user-defined design choices. In this paper we want to better understand these choices by inspecting two key aspects "what did the network learn?", and "what can the network learn?". We exploit new annotations (Pascal3D+), to enable a new empirical analysis of the R-CNN detector. Despite common belief, our results indicate that existing state-of-the-art convnet architectures are not invariant to various appearance factors. In fact, all considered networks have similar weak points which cannot be mitigated by simply increasing the training data (architectural changes are needed). We show that overall performance can improve when using image renderings for data augmentation. We report the best known results on the Pascal3D+ detection and view-point estimation tasks

    Understanding the Influence of Rendering Parameters in Synthetic Datasets for Neural Semantic Segmentation Tasks

    Get PDF
    Cursos e Congresos , C-155[Abstract] Deep neural networks are well known for demanding large amounts of training data, motivating the appearance of multiple synthetic datasets covering multiple domains. However, synthetic datasets have not yet outperformed real data for autonomous driving applications, particularly for semantic segmentation tasks. Thus, a deeper comprehension about how the parameters involved in synthetic data generation could help in creating better synthetic datasets. This work provides a summary review of prior research covering how image noise, camera noise and rendering photorealism could affect learning tasks. Furthermore, we presents novel experiments aimed at advancing our understanding around generating synthetic data for autonomous driving neural networks aimed at semantic segmentationXunta de Galicia; ED431F 2021/11This work has been supported by the Spanish Ministry of Science and Innovation (AEI/PID2020-115734RB-C22). We also want to acknowledge Side Effects Software Inc. for their support to this work. J.A. Iglesias-Guitian also acknowledges the UDC-Inditex InTalent programme, the Ministry of Science and Innovation (AEI/RYC2018-025385-I) and Xunta de Galicia (ED431F 2021/11). CITIC is funded by the Xunta de Galicia through the collaboration agreement between the Consellería de Cultura, Educación, Formación Profesional e Universidades and the Galician universities for the reinforcement of the research centres of the Galician University System (CIGUS

    Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views

    Full text link
    This paper presents an end-to-end convolutional neural network (CNN) for 2D-3D exemplar detection. We demonstrate that the ability to adapt the features of natural images to better align with those of CAD rendered views is critical to the success of our technique. We show that the adaptation can be learned by compositing rendered views of textured object models on natural images. Our approach can be naturally incorporated into a CNN detection pipeline and extends the accuracy and speed benefits from recent advances in deep learning to 2D-3D exemplar detection. We applied our method to two tasks: instance detection, where we evaluated on the IKEA dataset, and object category detection, where we out-perform Aubry et al. for "chair" detection on a subset of the Pascal VOC dataset.Comment: To appear in CVPR 201

    Single-image Tomography: 3D Volumes from 2D Cranial X-Rays

    Get PDF
    As many different 3D volumes could produce the same 2D x-ray image, inverting this process is challenging. We show that recent deep learning-based convolutional neural networks can solve this task. As the main challenge in learning is the sheer amount of data created when extending the 2D image into a 3D volume, we suggest firstly to learn a coarse, fixed-resolution volume which is then fused in a second step with the input x-ray into a high-resolution volume. To train and validate our approach we introduce a new dataset that comprises of close to half a million computer-simulated 2D x-ray images of 3D volumes scanned from 175 mammalian species. Applications of our approach include stereoscopic rendering of legacy x-ray images, re-rendering of x-rays including changes of illumination, view pose or geometry. Our evaluation includes comparison to previous tomography work, previous learning methods using our data, a user study and application to a set of real x-rays

    Generative Model with Coordinate Metric Learning for Object Recognition Based on 3D Models

    Full text link
    Given large amount of real photos for training, Convolutional neural network shows excellent performance on object recognition tasks. However, the process of collecting data is so tedious and the background are also limited which makes it hard to establish a perfect database. In this paper, our generative model trained with synthetic images rendered from 3D models reduces the workload of data collection and limitation of conditions. Our structure is composed of two sub-networks: semantic foreground object reconstruction network based on Bayesian inference and classification network based on multi-triplet cost function for avoiding over-fitting problem on monotone surface and fully utilizing pose information by establishing sphere-like distribution of descriptors in each category which is helpful for recognition on regular photos according to poses, lighting condition, background and category information of rendered images. Firstly, our conjugate structure called generative model with metric learning utilizing additional foreground object channels generated from Bayesian rendering as the joint of two sub-networks. Multi-triplet cost function based on poses for object recognition are used for metric learning which makes it possible training a category classifier purely based on synthetic data. Secondly, we design a coordinate training strategy with the help of adaptive noises acting as corruption on input images to help both sub-networks benefit from each other and avoid inharmonious parameter tuning due to different convergence speed of two sub-networks. Our structure achieves the state of the art accuracy of over 50\% on ShapeNet database with data migration obstacle from synthetic images to real photos. This pipeline makes it applicable to do recognition on real images only based on 3D models.Comment: 14 page
    corecore