20,990 research outputs found

    A manifesto for a socio-technical approach to NHS and social care IT-enabled business change - to deliver effective high quality health and social care for all

    Get PDF
    80% of IT projects are known to fail. Adopting a socio-technical approach will help them to succeed in the future. The socio-technical proposition is simply that any work system comprises both a social system (including the staff, their working practices, job roles, culture and goals) and a technical system (the tools and technologies that support and enable work processes). These elements together form a single system comprising interacting parts. The technical and the social elements need to be jointly designed (or redesigned) so that they are congruent and support one another in delivering a better service. Focusing on one aspect alone is likely to be sub-optimal and wastes money (Clegg, 2008). Thus projects that just focus on the IT will almost always fail to deliver the full benefits

    A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management.

    Get PDF
    OBJECTIVE:Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. MATERIALS AND METHODS:An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. RESULTS:Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application ("app"), Blip, to visualize the data. Tidepool's software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. DISCUSSION:By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. CONCLUSION:The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool's open source, cloud model for health data interoperability is applicable to other healthcare use cases

    Data Management Roles for Librarians

    Get PDF
    In this Chapter:● Looking at data through different lenses● Exploring the range of data use and data support ● Using data as the basis for informed decision making ● Treating data as a legitimate scholarly research produc

    Data Mining in Electronic Commerce

    Full text link
    Modern business is rushing toward e-commerce. If the transition is done properly, it enables better management, new services, lower transaction costs and better customer relations. Success depends on skilled information technologists, among whom are statisticians. This paper focuses on some of the contributions that statisticians are making to help change the business world, especially through the development and application of data mining methods. This is a very large area, and the topics we cover are chosen to avoid overlap with other papers in this special issue, as well as to respect the limitations of our expertise. Inevitably, electronic commerce has raised and is raising fresh research problems in a very wide range of statistical areas, and we try to emphasize those challenges.Comment: Published at http://dx.doi.org/10.1214/088342306000000204 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    corecore