6 research outputs found

    Learning Aligned Cross-Modal Representations from Weakly Aligned Data

    Get PDF
    People can recognize scenes across many different modalities beyond natural images. In this paper, we investigate how to learn cross-modal scene representations that transfer across modalities. To study this problem, we introduce a new cross-modal scene dataset. While convolutional neural networks can categorize cross-modal scenes well, they also learn an intermediate representation not aligned across modalities, which is undesirable for cross-modal transfer applications. We present methods to regularize cross-modal convolutional neural networks so that they have a shared representation that is agnostic of the modality. Our experiments suggest that our scene representation can help transfer representations across modalities for retrieval. Moreover, our visualizations suggest that units emerge in the shared representation that tend to activate on consistent concepts independently of the modality.Comment: Conference paper at CVPR 201

    Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

    Full text link
    While the majority of today's object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we address this issue from the perspective of transfer learning, and design an object class model that explicitly leverages correlations between visual features. Specifically, our model represents prior distributions over permissible multi-view detectors in a parametric way -- the priors are learned once from training data of a source object class, and can later be used to facilitate the learning of a detector for a target class. As we show in our experiments, this transfer is not only beneficial for detectors based on basic-level category representations, but also enables the robust learning of detectors that represent classes at finer levels of granularity, where training data is typically even scarcer and more unbalanced. As a result, we report largely improved performance in simultaneous 2D object localization and viewpoint estimation on a recent dataset of challenging street scenes.Comment: 13 pages, 7 figures, 4 tables, International Conference on Learning Representations 201

    What Makes a Good Detector? -- {Structured} Priors for Learning from Few Examples

    No full text

    Semi-supervised learning for image classification

    Get PDF
    Object class recognition is an active topic in computer vision still presenting many challenges. In most approaches, this task is addressed by supervised learning algorithms that need a large quantity of labels to perform well. This leads either to small datasets (< 10,000 images) that capture only a subset of the real-world class distribution (but with a controlled and verified labeling procedure), or to large datasets that are more representative but also add more label noise. Therefore, semi-supervised learning is a promising direction. It requires only few labels while simultaneously making use of the vast amount of images available today. We address object class recognition with semi-supervised learning. These algorithms depend on the underlying structure given by the data, the image description, and the similarity measure, and the quality of the labels. This insight leads to the main research questions of this thesis: Is the structure given by labeled and unlabeled data more important than the algorithm itself? Can we improve this neighborhood structure by a better similarity metric or with more representative unlabeled data? Is there a connection between the quality of labels and the overall performance and how can we get more representative labels? We answer all these questions, i.e., we provide an extensive evaluation, we propose several graph improvements, and we introduce a novel active learning framework to get more representative labels.Objektklassifizierung ist ein aktives Forschungsgebiet in maschineller Bildverarbeitung was bisher nur unzureichend gelöst ist. Die meisten Ansätze versuchen die Aufgabe durch überwachtes Lernen zu lösen. Aber diese Algorithmen benötigen eine hohe Anzahl von Trainingsdaten um gut zu funktionieren. Das führt häufig entweder zu sehr kleinen Datensätzen (< 10,000 Bilder) die nicht die reale Datenverteilung einer Klasse wiedergeben oder zu sehr grossen Datensätzen bei denen man die Korrektheit der Labels nicht mehr garantieren kann. Halbüberwachtes Lernen ist eine gute Alternative zu diesen Methoden, da sie nur sehr wenige Labels benötigen und man gleichzeitig Datenressourcen wie das Internet verwenden kann. In dieser Arbeit adressieren wir Objektklassifizierung mit halbüberwachten Lernverfahren. Diese Algorithmen sind sowohl von der zugrundeliegenden Struktur, die sich aus den Daten, der Bildbeschreibung und der Distanzmasse ergibt, als auch von der Qualität der Labels abhängig. Diese Erkenntnis hat folgende Forschungsfragen aufgeworfen: Ist die Struktur wichtiger als der Algorithmus selbst? Können wir diese Struktur gezielt verbessern z.B. durch eine bessere Metrik oder durch mehr Daten? Gibt es einen Zusammenhang zwischen der Qualität der Labels und der Gesamtperformanz der Algorithmen? In dieser Arbeit beantworten wir diese Fragen indem wir diese Methoden evaluieren. Ausserdem entwickeln wir neue Methoden um die Graphstruktur und die Labels zu verbessern

    Richer object representations for object class detection in challenging real world images

    Get PDF
    Object class detection in real world images has been a synonym for object localization for the longest time. State-of-the-art detection methods, inspired by renowned detection benchmarks, typically target 2D bounding box localization of objects. At the same time, due to the rapid technological and scientific advances, high-level vision applications, aiming at understanding the visual world as a whole, are coming into the focus. The diversity of the visual world challenges these applications in terms of representational complexity, robust inference and training data. As objects play a central role in any vision system, it has been argued that richer object representations, providing higher level of detail than modern detection methods, are a promising direction towards understanding visual scenes. Besides bridging the gap between object class detection and high-level tasks, richer object representations also lead to more natural object descriptions, bringing computer vision closer to human perception. Inspired by these prospects, this thesis explores four different directions towards richer object representations, namely, 3D object representations, fine-grained representations, occlusion representations, as well as understanding convnet representations. Moreover, this thesis illustrates that richer object representations can facilitate high-level applications, providing detailed and natural object descriptions. In addition, the presented representations attain high performance rates, at least on par or often superior to state-of-the-art methods.Detektion von Objektklassen in natürlichen Bildern war lange Zeit gleichbedeutend mit Lokalisierung von Objekten. Von anerkannten Detektions-Benchmarks inspirierte Detektionsmethoden, die auf dem neuesten Stand der Forschung sind, zielen üblicherweise auf die Lokalisierung von Objekten im Bild. Gleichzeitig werden durch den schnellen technologischen und wissenschaftlichen Fortschritt abstraktere Bildverarbeitungsanwendungen, die ein Verständnis der visuellen Welt als Ganzes anstreben, immer interessanter. Die Diversität der visuellen Welt ist eine Herausforderung für diese Anwendungen hinsichtlich der Komplexität der Darstellung, robuster Inferenz und Trainingsdaten. Da Objekte eine zentrale Rolle in jedem Visionssystem spielen, wurde argumentiert, dass reichhaltige Objektrepräsentationen, die höhere Detailgenauigkeit als gegenwärtige Detektionsmethoden bieten, ein vielversprechender Schritt zum Verständnis visueller Szenen sind. Reichhaltige Objektrepräsentationen schlagen eine Brücke zwischen der Detektion von Objektklassen und abstrakteren Aufgabenstellungen, und sie führen auch zu natürlicheren Objektbeschreibungen, wodurch sie die Bildverarbeitung der menschlichen Wahrnehmung weiter annähern. Aufgrund dieser Perspektiven erforscht die vorliegende Arbeit vier verschiedene Herangehensweisen zu reichhaltigeren Objektrepräsentationen

    Richer object representations for object class detection in challenging real world images

    Get PDF
    Object class detection in real world images has been a synonym for object localization for the longest time. State-of-the-art detection methods, inspired by renowned detection benchmarks, typically target 2D bounding box localization of objects. At the same time, due to the rapid technological and scientific advances, high-level vision applications, aiming at understanding the visual world as a whole, are coming into the focus. The diversity of the visual world challenges these applications in terms of representational complexity, robust inference and training data. As objects play a central role in any vision system, it has been argued that richer object representations, providing higher level of detail than modern detection methods, are a promising direction towards understanding visual scenes. Besides bridging the gap between object class detection and high-level tasks, richer object representations also lead to more natural object descriptions, bringing computer vision closer to human perception. Inspired by these prospects, this thesis explores four different directions towards richer object representations, namely, 3D object representations, fine-grained representations, occlusion representations, as well as understanding convnet representations. Moreover, this thesis illustrates that richer object representations can facilitate high-level applications, providing detailed and natural object descriptions. In addition, the presented representations attain high performance rates, at least on par or often superior to state-of-the-art methods.Detektion von Objektklassen in natürlichen Bildern war lange Zeit gleichbedeutend mit Lokalisierung von Objekten. Von anerkannten Detektions-Benchmarks inspirierte Detektionsmethoden, die auf dem neuesten Stand der Forschung sind, zielen üblicherweise auf die Lokalisierung von Objekten im Bild. Gleichzeitig werden durch den schnellen technologischen und wissenschaftlichen Fortschritt abstraktere Bildverarbeitungsanwendungen, die ein Verständnis der visuellen Welt als Ganzes anstreben, immer interessanter. Die Diversität der visuellen Welt ist eine Herausforderung für diese Anwendungen hinsichtlich der Komplexität der Darstellung, robuster Inferenz und Trainingsdaten. Da Objekte eine zentrale Rolle in jedem Visionssystem spielen, wurde argumentiert, dass reichhaltige Objektrepräsentationen, die höhere Detailgenauigkeit als gegenwärtige Detektionsmethoden bieten, ein vielversprechender Schritt zum Verständnis visueller Szenen sind. Reichhaltige Objektrepräsentationen schlagen eine Brücke zwischen der Detektion von Objektklassen und abstrakteren Aufgabenstellungen, und sie führen auch zu natürlicheren Objektbeschreibungen, wodurch sie die Bildverarbeitung der menschlichen Wahrnehmung weiter annähern. Aufgrund dieser Perspektiven erforscht die vorliegende Arbeit vier verschiedene Herangehensweisen zu reichhaltigeren Objektrepräsentationen
    corecore