469,035 research outputs found

    Theory of Regulatory Compliance for Requirements Engineering

    Full text link
    Regulatory compliance is increasingly being addressed in the practice of requirements engineering as a main stream concern. This paper points out a gap in the theoretical foundations of regulatory compliance, and presents a theory that states (i) what it means for requirements to be compliant, (ii) the compliance problem, i.e., the problem that the engineer should resolve in order to verify whether requirements are compliant, and (iii) testable hypotheses (predictions) about how compliance of requirements is verified. The theory is instantiated by presenting a requirements engineering framework that implements its principles, and is exemplified on a real-world case study.Comment: 16 page

    Revisiting the Core Ontology and Problem in Requirements Engineering

    Full text link
    In their seminal paper in the ACM Transactions on Software Engineering and Methodology, Zave and Jackson established a core ontology for Requirements Engineering (RE) and used it to formulate the "requirements problem", thereby defining what it means to successfully complete RE. Given that stakeholders of the system-to-be communicate the information needed to perform RE, we show that Zave and Jackson's ontology is incomplete. It does not cover all types of basic concerns that the stakeholders communicate. These include beliefs, desires, intentions, and attitudes. In response, we propose a core ontology that covers these concerns and is grounded in sound conceptual foundations resting on a foundational ontology. The new core ontology for RE leads to a new formulation of the requirements problem that extends Zave and Jackson's formulation. We thereby establish new standards for what minimum information should be represented in RE languages and new criteria for determining whether RE has been successfully completed.Comment: Appears in the proceedings of the 16th IEEE International Requirements Engineering Conference, 2008 (RE'08). Best paper awar

    Revisiting the Core Ontology and Problem in Requirements Engineering

    Full text link
    In their seminal paper in the ACM Transactions on Software Engineering and Methodology, Zave and Jackson established a core ontology for Requirements Engineering (RE) and used it to formulate the "requirements problem", thereby defining what it means to successfully complete RE. Given that stakeholders of the system-to-be communicate the information needed to perform RE, we show that Zave and Jackson's ontology is incomplete. It does not cover all types of basic concerns that the stakeholders communicate. These include beliefs, desires, intentions, and attitudes. In response, we propose a core ontology that covers these concerns and is grounded in sound conceptual foundations resting on a foundational ontology. The new core ontology for RE leads to a new formulation of the requirements problem that extends Zave and Jackson's formulation. We thereby establish new standards for what minimum information should be represented in RE languages and new criteria for determining whether RE has been successfully completed.Comment: Appears in the proceedings of the 16th IEEE International Requirements Engineering Conference, 2008 (RE'08). Best paper awar

    Web Services as Product Experience Augmenters and the Implications for Requirements Engineering: A Position Paper

    Get PDF
    There is currently little insight into what requirement engineering for web services is and in which context it will be carried out. In this position paper, we investigate requirements engineering for a special kind of web services, namely web services that are used to augment the perceived value of a primary service or product that is itself not a web service. We relate requirements engineering to a common enterprise architecture pattern and derive from this a number of research questions for further study

    Software acquisition: a business strategy analysis

    Get PDF
    The paper argues that there are new insights to be gained from a strategic analysis of requirements engineering. The paper is motivated by a simple question: what does it take to be a world class software acquirer? The question has relevance for requirements engineers because for many organisations market pressures mean that software is commonly acquired rather than developed from scratch. The paper builds on the work of C. H. Fine (1998) who suggests that product, process and supply chain should be designed together, i.e., 3D concurrent engineering. Using a number of reference theories, it proposes a systematic way of carrying out 3D concurrent engineering. The paper concludes that the critical activity in supply chain design is the design of the distribution of skills and the nature of contract

    A practical approach to object based requirements analysis

    Get PDF
    Presented here is an approach developed at the Unisys Houston Operation Division, which supports the early identification of objects. This domain oriented analysis and development concept is based on entity relationship modeling and object data flow diagrams. These modeling techniques, based on the GOOD methodology developed at the Goddard Space Flight Center, support the translation of requirements into objects which represent the real-world problem domain. The goal is to establish a solid foundation of understanding before design begins, thereby giving greater assurance that the system will do what is desired by the customer. The transition from requirements to object oriented design is also promoted by having requirements described in terms of objects. Presented is a five step process by which objects are identified from the requirements to create a problem definition model. This process involves establishing a base line requirements list from which an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the identification of objects from the requirements. An example is given of how semantic modeling may be used to improve the entity-relationship model and a brief discussion on how this approach might be used in a large scale development effort

    What Am I Testing and Where? Comparing Testing Procedures based on Lightweight Requirements Annotations

    Get PDF
    [Context] The testing of software-intensive systems is performed in different test stages each having a large number of test cases. These test cases are commonly derived from requirements. Each test stages exhibits specific demands and constraints with respect to their degree of detail and what can be tested. Therefore, specific test suites are defined for each test stage. In this paper, the focus is on the domain of embedded systems, where, among others, typical test stages are Software- and Hardware-in-the-loop. [Objective] Monitoring and controlling which requirements are verified in which detail and in which test stage is a challenge for engineers. However, this information is necessary to assure a certain test coverage, to minimize redundant testing procedures, and to avoid inconsistencies between test stages. In addition, engineers are reluctant to state their requirements in terms of structured languages or models that would facilitate the relation of requirements to test executions. [Method] With our approach, we close the gap between requirements specifications and test executions. Previously, we have proposed a lightweight markup language for requirements which provides a set of annotations that can be applied to natural language requirements. The annotations are mapped to events and signals in test executions. As a result, meaningful insights from a set of test executions can be directly related to artifacts in the requirements specification. In this paper, we use the markup language to compare different test stages with one another. [Results] We annotate 443 natural language requirements of a driver assistance system with the means of our lightweight markup language. The annotations are then linked to 1300 test executions from a simulation environment and 53 test executions from test drives with human drivers. Based on the annotations, we are able to analyze how similar the test stages are and how well test stages and test cases are aligned with the requirements. Further, we highlight the general applicability of our approach through this extensive experimental evaluation. [Conclusion] With our approach, the results of several test levels are linked to the requirements and enable the evaluation of complex test executions. By this means, practitioners can easily evaluate how well a systems performs with regards to its specification and, additionally, can reason about the expressiveness of the applied test stage.TU Berlin, Open-Access-Mittel - 202

    The Safety Risks of Proposed Fuel Economy Legislation

    Get PDF
    Based on, e.g., a comprehensive assessment of what is known of factors influencing automobile safety, previous industry responses to requirements for fuel economy and prior success of regulators in reducing injuries, Professor Graham concludes that pending fuel economy bills are apt to add 1650 fatalities and 8500 serious accidents to the annual highway toll. He also presents several short-term and long-term strategies for simultaneously saving fuel and lives
    • …
    corecore