187 research outputs found

    High-Quality Symmetric Wyner–Ziv Coding Scheme for Low-Motion Videos

    Get PDF
    Traditional Wyner-Ziv video coding (WZVC) structures require either intra (Key) or Wyner-Ziv (WZ) coding of frames. Unfortunately, keeping the video quality approximately constant implies drastic bit-rate fluctuations because consecutive frames of different types (Key or WZ) present significantly different compression performances. Moreover, certain scenarios severely limit rate fluctuation. This work proposes a WZVC scheme with low bit-rate fluctuations based on a symmetric coding structure. First, this work investigates the performance of a generic nonasymmetric distributed source coding structure, showing that the low-density parity-check accumulate channel decoding method is best suited. This is used as a basis to design a symmetric WZVC scheme in which every input video frame is divided into four parallel subframes through subsampling, and then the subframes are encoded by using a symmetric method. Compared with the traditional asymmetric WZVC scheme, the proposed scheme can achieve higher bit-rate stability over time, which is a great advantage to guarantee a reliable transmission in many wireless communication application environments in which bit-rate fluctuations are strongly constrained. Simulation results show the effectiveness of the proposed symmetric WZVC scheme in maintaining a steady bit rate and quality, as well as a quality comparison with the traditional WZVC scheme

    REGION-BASED ADAPTIVE DISTRIBUTED VIDEO CODING CODEC

    Get PDF
    The recently developed Distributed Video Coding (DVC) is typically suitable for the applications where the conventional video coding is not feasible because of its inherent high-complexity encoding. Examples include video surveillance usmg wireless/wired video sensor network and applications using mobile cameras etc. With DVC, the complexity is shifted from the encoder to the decoder. The practical application of DVC is referred to as Wyner-Ziv video coding (WZ) where an estimate of the original frame called "side information" is generated using motion compensation at the decoder. The compression is achieved by sending only that extra information that is needed to correct this estimation. An error-correcting code is used with the assumption that the estimate is a noisy version of the original frame and the rate needed is certain amount of the parity bits. The side information is assumed to have become available at the decoder through a virtual channel. Due to the limitation of compensation method, the predicted frame, or the side information, is expected to have varying degrees of success. These limitations stem from locationspecific non-stationary estimation noise. In order to avoid these, the conventional video coders, like MPEG, make use of frame partitioning to allocate optimum coder for each partition and hence achieve better rate-distortion performance. The same, however, has not been used in DVC as it increases the encoder complexity. This work proposes partitioning the considered frame into many coding units (region) where each unit is encoded differently. This partitioning is, however, done at the decoder while generating the side-information and the region map is sent over to encoder at very little rate penalty. The partitioning allows allocation of appropriate DVC coding parameters (virtual channel, rate, and quantizer) to each region. The resulting regions map is compressed by employing quadtree algorithm and communicated to the encoder via the feedback channel. The rate control in DVC is performed by channel coding techniques (turbo codes, LDPC, etc.). The performance of the channel code depends heavily on the accuracy of virtual channel model that models estimation error for each region. In this work, a turbo code has been used and an adaptive WZ DVC is designed both in transform domain and in pixel domain. The transform domain WZ video coding (TDWZ) has distinct superior performance as compared to the normal Pixel Domain Wyner-Ziv (PDWZ), since it exploits the ' spatial redundancy during the encoding. The performance evaluations show that the proposed system is superior to the existing distributed video coding solutions. Although the, proposed system requires extra bits representing the "regions map" to be transmitted, fuut still the rate gain is noticeable and it outperforms the state-of-the-art frame based DVC by 0.6-1.9 dB. The feedback channel (FC) has the role to adapt the bit rate to the changing ' statistics between the side infonmation and the frame to be encoded. In the unidirectional scenario, the encoder must perform the rate control. To correctly estimate the rate, the encoder must calculate typical side information. However, the rate cannot be exactly calculated at the encoder, instead it can only be estimated. This work also prbposes a feedback-free region-based adaptive DVC solution in pixel domain based on machine learning approach to estimate the side information. Although the performance evaluations show rate-penalty but it is acceptable considering the simplicity of the proposed algorithm. vii

    REGION-BASED ADAPTIVE DISTRIBUTED VIDEO CODING CODEC

    Get PDF
    The recently developed Distributed Video Coding (DVC) is typically suitable for the applications where the conventional video coding is not feasible because of its inherent high-complexity encoding. Examples include video surveillance usmg wireless/wired video sensor network and applications using mobile cameras etc. With DVC, the complexity is shifted from the encoder to the decoder. The practical application of DVC is referred to as Wyner-Ziv video coding (WZ) where an estimate of the original frame called "side information" is generated using motion compensation at the decoder. The compression is achieved by sending only that extra information that is needed to correct this estimation. An error-correcting code is used with the assumption that the estimate is a noisy version of the original frame and the rate needed is certain amount of the parity bits. The side information is assumed to have become available at the decoder through a virtual channel. Due to the limitation of compensation method, the predicted frame, or the side information, is expected to have varying degrees of success. These limitations stem from locationspecific non-stationary estimation noise. In order to avoid these, the conventional video coders, like MPEG, make use of frame partitioning to allocate optimum coder for each partition and hence achieve better rate-distortion performance. The same, however, has not been used in DVC as it increases the encoder complexity. This work proposes partitioning the considered frame into many coding units (region) where each unit is encoded differently. This partitioning is, however, done at the decoder while generating the side-information and the region map is sent over to encoder at very little rate penalty. The partitioning allows allocation of appropriate DVC coding parameters (virtual channel, rate, and quantizer) to each region. The resulting regions map is compressed by employing quadtree algorithm and communicated to the encoder via the feedback channel. The rate control in DVC is performed by channel coding techniques (turbo codes, LDPC, etc.). The performance of the channel code depends heavily on the accuracy of virtual channel model that models estimation error for each region. In this work, a turbo code has been used and an adaptive WZ DVC is designed both in transform domain and in pixel domain. The transform domain WZ video coding (TDWZ) has distinct superior performance as compared to the normal Pixel Domain Wyner-Ziv (PDWZ), since it exploits the ' spatial redundancy during the encoding. The performance evaluations show that the proposed system is superior to the existing distributed video coding solutions. Although the, proposed system requires extra bits representing the "regions map" to be transmitted, fuut still the rate gain is noticeable and it outperforms the state-of-the-art frame based DVC by 0.6-1.9 dB. The feedback channel (FC) has the role to adapt the bit rate to the changing ' statistics between the side infonmation and the frame to be encoded. In the unidirectional scenario, the encoder must perform the rate control. To correctly estimate the rate, the encoder must calculate typical side information. However, the rate cannot be exactly calculated at the encoder, instead it can only be estimated. This work also prbposes a feedback-free region-based adaptive DVC solution in pixel domain based on machine learning approach to estimate the side information. Although the performance evaluations show rate-penalty but it is acceptable considering the simplicity of the proposed algorithm. vii

    Towards practical distributed video coding

    Get PDF
    Multimedia is increasingly becoming a utility rather than mere entertainment. The range of video applications has increased, some of which are becoming indispensable in modem lifestyle. Video surveillance is one area that has attracted significant amount of focus and also benefited from considerable research effort for development. However, it is noted that there is still a notable technological gap between an ideal video surveillance platform and the available solutions, mainly in the form of the encoder and decoder complexity balance and the associated design costs. In this thesis, we tocus on an emerging technology, Distributed Video Coding (DVC), which is ideally suited for the video surveillance scenario, and fits many other potential applications too.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Advanced distributed video coding techniques

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Low Density Graph Codes And Novel Optimization Strategies For Information Transfer Over Impaired Medium

    Get PDF
    Effective methods for information transfer over an imperfect medium are of great interest. This thesis addresses the following four topics involving low density graph codes and novel optimization strategies.Firstly, we study the performance of a promising coding technique: low density generator matrix (LDGM) codes. LDGM codes provide satisfying performance while maintaining low encoding and decoding complexities. In the thesis, the performance of LDGM codes is extracted for both majority-rule-based and sum-product iterative decoding algorithms. The ultimate performance of the coding scheme is revealed through distance spectrum analysis. We derive the distance spectral for both LDGM codes and concatenated LDGM codes. The results show that serial-concatenated LDGM codes deliver extremely low error-floors. This work provides valued information for selecting the parameters of LDGM codes. Secondly, we investigate network-coding on relay-assisted wireless multiple access (WMA) networks. Network-coding is an effective way to increase robustness and traffic capacity of networks. Following the framework of network-coding, we introduce new network codes for the WMA networks. The codes are constructed based on sparse graphs, and can explore the diversities available from both the time and space domains. The data integrity from relays could be compromised when the relays are deployed in open areas. For this, we propose a simple but robust security mechanism to verify the data integrity.Thirdly, we study the problem of bandwidth allocation for the transmission of multiple sources of data over a single communication medium. We aim to maximize the overall user satisfaction, and formulate an optimization problem. Using either the logarithmic or exponential form of satisfaction function, we derive closed-form optimal solutions, and show that the optimal bandwidth allocation for each type of data is piecewise linear with respect to the total available bandwidth. Fourthly, we consider the optimization strategy on recovery of target spectrum for filter-array-based spectrometers. We model the spectrophotometric system as a communication system, in which the information content of the target spectrum is passed through distortive filters. By exploiting non-negative nature of spectral content, a non-negative least-square optimal criterion is found particularly effective. The concept is verified in a hardware implemen
    • …
    corecore