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Summary

The requirement for multimedia has been growing rapidly where video communication was once
considered an entertainment feature, has increasingly become a necessity in modern lifestyle.
Mobile video communication and video surveillance are some of the areas that have attracted a
considerable amount of attention and notable research efforts have been made for developments.
However, current solutions for video communications are far from the ideal video platforms for
these technologies mainly due to the high cost and power consumption of the encoder or, in other
words, complexity balance of encoder and decoder. In this thesis, we focus on an emerging
technology, Distributed Video Coding (DVC), which is ideally suited for such scenarios where
the encoder complexity is a critical factor. A number of technical solutions are proposed to the

coding framework, in view of improving the performance of DVC towards the conventional video

coding techniques.

In this thesis, several approaches have been discussed in order to improve the performance of
DVC. First, the progressive nature of side information generation process is enhanced by iterative
side information refinement techniques making use of transform coding properties. Then a
residual coding scheme is proposed in order to exploit some of the temporal correlation by low
complexity operations at the encoder. A non-linear quantisation technique is proposed exploiting
the distribution of the residual components. Afterwards, a block based coding technique 1is
proposed for unidirectional DVC and this technique is further enhanced by an improved
reconstruction algorithm. Finally, two modified frame coding structures are considered for DVC
targeting typical application scenarios. First technique is the interlaced coding which targets high
motion videos and low delay requirements; and the second one is the region of activity based
coding targeting applications with still cameras. The performances of all proposed techniques are

verified and results for all the proposed techniques considerably improved the performance

compared to state of the art.
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1 Introduction

1.1 Preamble

Unprecedented growth of consumer appetite for multimedia contents has become the major
driving force governing today’s dynamics of the consumer electronic market. Due to the ever
falling cost, multi-media enabled consumer electronic devices are within the reach of most of the
global population and therefore, they are no longer considered luxury devices. Consequent sheer
demand for consumer electronic devices, in return, paves the way to new technological
innovations and advancements within the consumer electronic domain that reduces the cost even
further while including more demanding functionalities to existing devices. While these
tremendous technological innovations and growth of consumer demand touches every corner of
the consumer electronic domain, multi-functional portable devices have won unexpected
attention. The most commonplace example 1s that of the mobile phone that includes
functionalities of audiovisual communication, television receiver, digital camcorder, media
player, personal organiser, text/email transceiver, browser and gaming device at present. Inline
with these market dynamics, the demand for more cost effective multimedia enabling

technologies, such as low complexity video coding algorithms, 1s imminent.

Video coding technologies have evolved significantly during the past decade, dominated by the
work on ISO/IEC MPEG and ITU-T H.26x standards based techniques. These approaches were
characterised by a highly complexity video encoder structure and a significantly lower complexity
decoder structure as demanded by many popular applications involving one-to-many topologies.
Video capturing and encoding was conventionally limited compared to the largely spread listeners
to the mostly broadcast type services. However, this concept is increasingly challenged by the
emerging and progressively more popular applications involving more encoders than decoders.
Security surveillance systems and a number of other remote monitoring applications involving

wireless sensor networks promote the use of widely spread encoder networks sharing a limited

number of decoders: hence much more encoders than decoders.

Unlike the early days, when attention was only on the functionality and perhaps the robustness of
the device, nowadays consumers expects small, stylish designs as well. According to this new

trend, it is a tremendous challenge to put ever increasing number of sophisticated functionalities

1
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Into a tiny device. Undoubtedly, the processing power, memory capacity and battery capacity
must be compromised to achieve required level of miniaturisation. Therefore, the enabling
technologies have to be designed in such a way that they are less resource hungry yet functionally
competing. The emerging Distributed Video Coding (DVC) concept has the potential of fulfilling
the above requirements. DVC marks a dramatic structural change in video coding by shifting the
majority of computational complexity, which conventionally resides in the encoder, towards the
decoder. The computationally intensive source redundancy exploitation, which is instrumental in
achieving large compression ratios, is accordingly performed by the decoder, with this modified
computational complexity balance, the DVC encoder retains extremely less expensive operation
[1]. Consequently, inexpensive and energy efficient encoder implantations are possible with

DVC. Some of the application scenarios are discussed in the following section:

1.1.1 Target Applications

In the literature, the main application requirements where DVC may bring major benefits are

identified as:

i. Flexible allocation of the complexity: The DVC approach provides a flexible allocation of the
video codec complexity between the encoder and decoder as it shifts some of the complexity from
the encoder to the decoder. This requirement includes low complexity encoding and low power

needs.

ii. Improved error resilience: As DVC does not contain a prediction loop as with the conventional
video coding and decoder estimation 1s corrected by the encoder, an intrinsic resilience to

transmission errors has been claimed [2].

iii. Multi view: In order to exploit the correlation between the cameras in multi view video
scenarios, the DVC approach provides a significant architectural benefit since there 1s not a joint

encoder requirement, i.e. the communication between the cameras 1s not necessary.

iv. Scalability: In the current scalable codecs, there 1s a predictive approach from lower layers to
upper layers letting the encoder to know the decoding results for the previous layers. However, 1n

DVC there is no prediction loop between scalable layers, i.e. layers can be generated by various,

different and unknown codecs.

Following application scenarios are listed by DISCOVER (Distributed Coding for Video

Services) [3], and the corresponding requirements are given in Table 1.1:
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Table 1.1: DVC application scenarios and matching requirements [3]

Application Scenario Matching Requirements
| Wireless Video Cameras I, il

Wireless Low-Power Surveillance 1, i, L
| Mobile Document Scanner [, [

Video Conferencing with Mobile Devices | i, i

[ Mobile Video Mail :
Disposable Video Cameras ]
Visual Sensor Networks i, i1, Iil

Networked Camcorders

Distributed Video Streaming
Multiview Image Acquisition -

Wireless Capsule Endoscopy

1.1.2 Motivation

DVC has been initiated recently by two different groups ([1] and [4]) early 21st century which 18
emerged to support the application scenarios mentioned in the previous section. Since then, DVC
has attracted the attention of many researchers for low power and low cost video communication.
However, at the time this research started in 2006, it was still a relatively untouched area with a

challenging nature. Other motivations are:
e The increasing demand on the applications targeted by DVC

e The unique and attractive features of DVC compared to the parallel conventional

technologies
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1.2 Research Method

1.2.1 Baseline Technology

The innovative techniques in this thesis are implemented on top of the baseline DVC codec. As
the state of the art evolved, the baseline technology is updated. Due to the better compression
etficiency, transform domain coding architecture is selected for the studies and the proposed

techniques are all proposed for improving transform domain DVC.

At the beginning of this research, the Instituto Superior Tecnico (IST) DVC codec, which was
also chosen as the basic software framework for the European projects DISCOVER [5] and
VISNET-II (Networked Audiovisual Media Technologies) [6], is selected as a baseline. Later the
VISNET-II DVC codec (an upgraded version of IST DVC codec) is used for the remaining of the

studies for this thesis when it became available for this research.

1.2.2 Source Material

Throughout this thesis, a number of standard sequences are used for the tests. These video
sequences are short clips which are considered typical for person-to-person video
communications. All considered sequences are in YUV 4:2:0 format, which 1s a usual format for
low bit rate coding. In this format, video is represented using one luminance plane (Y) and two
chrominance planes (Cb and Cr). The luminance plane corresponds to the black and white
information and while the colour information is represented by chrominance planes. The
resolution of the luminance plane is twice that of each chrominance planes since the luminance

data is perceptually more important than the chrominance data. Following chapter explains video

basics in detail.

Four sequences in particular have been used for the majority of the tests carried out in the work
here, which are Hall-Monitor, Coastguard, Foreman and Soccer sequences. A full list of the
sequences used for the test throughout this thesis is given in Appendix A. Hall-Monitor and
Coastguard sequences represent low motion sequences where the former features a stationary
surveillance camera in an office and the latter is again a security camera capturing coast view with
slight camera movements. However, Foreman and Soccer sequences represent high motion

sequences since they contain considerable amount of motion. First frames from all four sequences

are shown in Figure 1-1.
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Figure 1-1: Frames from test videos

1.2.3 Performance Evaluation

The proposed techniques in this thesis are implemented on a baseline codec as discussed above.
As the DVC solutions rapidly evolved, the DVC codecs and the test conditions are evolved as

well throughout this research. In some tests, original key frames are assumed to be available at the

decoder, however later DISCOVER and VISNET-II test conditions are adopted unless the test
conditions are different for the bench marks considered in the literature. Therefore, the test

conditions vary throughout the thesis and the relevant conditions are documented before

describing each simulation results.

In this thesis. the test results are usually presented in the following formats:
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Objective quality vs. bit rate plots: Peak-to-peak Signal-to-Noise Ratio (PSNR) metric is
used for all results. However, Structural Similarity Index (SSIM) and Video Quality

Metric (VQM) metrics are obtained where necessary.

Objective quality (PSNR) vs. frame number

Decoded frames (in order to illustrate the subjective quality)

The details of the above techniques are represented in the following chapter.

1.3 Aim and Objectives

The main aim of this thesis is to improve the performance of transform domain Distributed Video

Coding. The specific objectives can be listed as follows:

Design 1terative side information generation algorithms considering transform domain

features
Optimise the quantisation process by considering non-linear techniques

Design an encoder rate controlling algorithm for unidirectional DVC conserving low

encoder complexity

Optimise the DVC codec through block based coding and interlaced coding

1.4 Novel Work Undertaken

A number of original achievements and contributions have been made to the field of DVC which

are supported by several international refereed publications listed in Appendix B. The main novel

contributions can be summarised as:

Iterative side information refinement techniques based on motion interpolation in DC

domain

Improved side information generation technique using modified codec architecture
Residual coding for transform domain DVC

Non-linear quantisation algorithm to improve rate distortion performance of DVC
Block based encoder rate allocation algorithm for Unidirectional DVC

Region of activity based coding

Interlaced coding technique for exploiting spatial correlations for intra-coded DVC.
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1.4.1 Publications

Some selected international refereed publications related to this thesis are listed below:

Journal Papers:

1. M.B. Badem, M. Mrak and W.A.C. Fernando, “Side information refinement using motion

estimation in DC domain for transform-based distributed video coding,” IET Electronics

Letters, Vol: 44, No: 16, pp. 965-966, July 2008.

2. M.B. Badem, W.A.R.J. Weerakkody, W.A.C. Fernando, A.M. Kondoz, “Design of a Non-
Linear Quantizer for Transform Domain DVC,” IEICE Transactions on Fundamentals of

Electronics, Communications and Computer, Vol. E92-A, No: 3, pp. 847-852, March 2009.

3. M.B. Badem, W.A.C. Fernando, W.A.R.J. Weerakkody, H. Kodikara Arachchi, A.M.
Kondoz, “Transform Domain Unidirectional Distributed Video Coding Using Dynamic Parity

Allocation,” IEICE Transactions on Fundamentals of Electronics, Communications and

Computer, Vol: E92-A, No: 4, pp.1202-1208, April 2009.

4. M.B. Badem, W.A.C. Fernando, A.M. Kondoz, "Transform Domain Distributed Video
Coding with Spatial Correlations," Multimedia Tools and Applications, Accepted for

publication.

Conference Papers:

5. M.B. Badem, H. Kodikara Arachchi, S.T. Worrall, A.M. Kondoz, “Transform Domain
Residual Coding Technique for Distributed Video coding,” Proceedings of Picture Coding

Symposium (PCS), Lisbon, Portugal, November 2007.

6. M.B. Badem, W.A.C. Fernando, W.A.R.J. Weerakkody, S.L.P. Yasakethu and A.M. Kondoz,
“Region-of-Activity Based Coding for Transtorm Domain DVC,” 4th International

Conference on Information and Automation for Sustainability (ICIAFS), Colombo, Sr1 Lanka,
December 2008.

7 M.B. Badem, W.A.C. Fernando, J.L. Martinez and P. Cuenca, “An Iterative Side Information
Refinement Technique for Transform Domain Distributed Video Coding,” Proceedings of

IEEE International Conference on Multimedia & Expo (ICME), New York, USA, June 2009.

Under Review:

e  M.B. Badem, W.A.C. Fernando, M. Mrak, "Improved side information generation for

transform domain distributed video coding," submitted to /ELE International Conference on

Acoustics, Speech and Signal Processing ( ICASSP) 2010.
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1.5 Structure of Thesis

Rest of this thesis is organised as follows:

Chapter 2: This chapter gives the literature review by explaining; the video coding basics,

conventional video coding techniques, Distributed Source Coding (DSC), DVC and the

recent work on DVC in detail.

Chapter 3: In this chapter, some novel side information refinement techniques are
proposed. First, a novel DC motion estimation algorithm is presented which forms the

basis of the proposed refinement techniques. Then, the proposed techniques are discussed

in detail followed by experimental results.

Chapter 4: In fourth chapter, a novel residual coding technique 1s proposed for transform

domain DVC followed by proposing a dynamic range quantisation technique to optimise
the performance of the residual DVC. In the second part of this chapter, a design of a non-

linear quantisation technique 1s presented.

Chapter 5: A unidirectional DVC solution is proposed in this chapter followed by
enhancing the subjective quality by adopting an improved reconstruction algorithm. After

discussing both techniques, experimental results are presented.

Chapter 6: In this chapter, two different frame coding structures have been considered for
transform domain DVC. First technique, an intra-coding DVC technique, with interlaced
coding is presented. A block based coding technique, based motion of activity levels of

each block, is discussed in the second part.

Chapter 7: Chapter seven contains the overall conclusions for the thesis, and gives

suggestions for the future research.
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Chapter 2

2 Literature Review

This chapter presents the detailed background for this thesis starting with the video basics and
conventional video coding. Following this, Distributed Source Coding principles are introduced,
as they form the theoretical basis of Distributed Video Coding. The architectures of currently

available Distributed Video Coding frameworks are presented in the following section and recent

related works are discussed later.

2.1 YVideo Coding Basics

2.1.1 Video Signals

Before considering the fundamentals of video coding and compression techniques, it is essential
to introduce a few important terminologies and concepts that are used throughout the thesis.
Therefore, this section presents an overview of video signals; video colour components, image

formats and video quality assessment technologies.

2.1.1.1 Video Colour Components

Raw video signals consist of three colour components: red, green and blue. These components are
called RGB signals. As these three colour signals are highly correlated and in order to provide

compatibility with black and white video, RGB signals are further processed to generate a new set

of signals.

In the popular PAL (phase alternate line) colour system, colour space 1s represented by YUV: Y
(luminance), U and V (chrominance) components. And these components can be calculated using

the following equations (where R'G'B’is the gamma corrected RGB) [7]:

Y =0.299R"+0.587G" +0.114B’ (2.1)
U =-0.147R’ - 0.289G" + 0.436B" =0.492(B’-Y) (2.2)
V =0.615R’-0.515G"-0.100B"=0.877(R"-Y) (2.3)
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For the digital video signals, the ITU-R Recommendation BT.601 (formerly CCIR-601), has
defined YC,C, colour space which is very close to YUV space of the PAL system. ¥ (luminance),

Cb and C, (chrominance) components can be calculated using the following equations [7]:

Y =0.257R’+0.504G’ +0.098B" +16 (2.4)
C, =-0.148R' - 0.291G’ +0.439B’ +128 (2.5)
C, =0.439R’~0.368G - 0.071B" +128 (2.6)

The slight changes to the parameters are limiting the luminance component to the range 16 — 235

and chrominance components to 16 — 240, centred on the grey level 128.

2.1.1.2 Image Formats

The 1mage format may vary significantly based upon the application requirements. For example,
for video telephony using mobile phones, small image sizes are preferred for less bandwidth
consumption (whilst maintaining acceptable image quality) whereas HDTV (High Definition
Television) demands larger frame sizes with improved luminance and chrominance resolutions.
Theretore, a series of frame formats have been defined; each format 1s defined by the spatial
resolution of the luminance and chrominance components as well as the temporal resolution. The
resolution of the chrominance signal is usually reduced compared to the resolution of the
luminance signal due to the nature of human visual perception. This reduction i1s defined by the
image format according to the percentage of each chrominance component resolution with respect

to the luminance resolution in the horizontal and vertical directions (Table 2.1) [7]:

Table 2.1: Image formats - chrominance resolution as a percentage of luminance resolution

Image Format Horizontal [ %] Vertical [%]

4:4:4
4:2:2
4:2:0
4:1:1

10
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CIF:

The Common Interchange Format (CIF) has been defined to enable conversion between different
standards, for example between European (625 line, 50 Hz) and North America and Far East (525
line, 60 Hz), for worldwide teleconferencing. CIF defines a video sequence with a resolution of

352 x 288 at 30 frames per second (fps) and an image format of 4:2:0 as illustrated in Figure
2-1[7]:

BA

© © ©

O
O
O

e © ©
@ © ©

HA

T
@ © @ 0

(OYblock B C,block AC,block

Figure 2-1: Sampling pattern of 4:2:0 image format [7]

Several extensions of CIF have been defined for certain applications. These define the temporal
resolutions as 15, 10 and 7.5 fps and spatial resolutions (luminance signal) as listed in the

following table:
Table 2.2: Extensions of CIF

Format Luminance Resolution

128 x 96
176 x 144
352 %X 288
704 x 576
1408 x 1152

SQCIF

QCIF

CIF
4CIF
16CIF

2.1.1.3 Video Quality Assessment

Image quality can be measured either subj ectively or objectively. For subjective tests, a number of
users are required to view and compare a number of video sequences. For each sequence it 1s

necessary to perform a number of tests for different bit rates in order to find an average

assessment of the quality. Consequently, subjective tests would require a group of people to

spend lots of time for viewing large number of sequences. Without any doubt, this 1s not a viable

11
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solution and form part of the reason why subjective tests are not often used in video coding

research.

The most common and simplest form of objective quality measurement is the ratio of peak-to-
peak signal to the root-mean-squared processing noise, which is referred to as peak-to-peak

signal-to-noise ratio (PSNR). The equation for PSNR is shown in (2.7):

255% (2.7)
1]\,7 Z(Yref (la ]) — Ydec (l, ]))2

atl(i,j)

PSNR =10log,,

Where N 1s the total number of pixels in the image and Y ref (s J) and Y, (i, j) are the pixel

values of the reference and decoded images. Overall video quality is usually obtained by
averaging the PSNR value throughout the sequence either by averaging the PSNR in the Mean
Square Error (MSE) or PSNR domain. In this thesis, the latter averaging method is adopted as it is

a widely used method in DVC and standard reference software implementations for video codecs
(MPEG-4 and H.264).

Table 2.3 gives a rough indication of the PSNR and quality relationship that might be expected
from encoding QCIF sequences at reasonably low bit rates. Certainly, these ranges can vary from

sequence to sequence.

Table 2.3: Guide to PSNR values (can vary depending on the sequence and encoding options)

< 20 Unacceptable, unintelligible
20 - 25 Subject 1s perceptible, unacceptable
25 - 28 May be acceptable, but degradation visible
28 — 32 Very little degradation visible
> 32 Good image quality l

In some cases there may be large inconsistencies between the PSNR and subjective test results.

For example, block errors may not have a significant effect on PSNR 1if it 1s due to a single bat

error. However, subjects can perceive this as an annoying artefact.

12
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In this study, where necessary, two other metrics have been used in addition to PSNR: Structural-
Similarity-Based Image Quality Assessment (SSIM) and Video Quality Metric (VQM). The
SSIM metric is based on the fact that the human visual system 1s highly adapted for extracting

structural information from a scene [8]. The equation for SSIM is shown in (2.8):

—— 2xy +C))(20,, +C,) (2.8)

(X*+3°+C))0," +0,° +C,)

Where, x = {x; | i = 1,2,....N} is the original signal and y = {y; | i = 1,2,...,N} is the distorted
. - = 2 __ 2 2 . .
signal. x, y, 0,7,0,7and 0,,” are the mean of x, mean of y, the variance of x, the variance of

y and the covariance of x and y respectively. C; and C, are constants. The SSIM metric takes
values between 0 and 1. The higher the SSIM index the better the quality, therefore 1 corresponds
to the highest quality. An 11 x 11 circular-symmetric Gaussian weighting function is used where
the mean and variances are obtained locally within this 11 x 11 sliding window. The overall index

of the 1mage is the average of all the quality indexes of the image.

The VQM metric is the combination of the perceptual effects of video impairments including
global noise, blurring, jerky/unnatural motion, block distortion and colour distortion into a single

metric. More information on the VQM evaluation techniques can be found in [9] and [10].

2.1.2 Video Compression

Transmussion of uncompressed video requires a high bandwidth and large storage capacities,
which can be unrealistic and costly. Therefore, video coding is necessary for compressing the
video whilst allowing reversible conversion of data, requiring fewer bits and more efficient
transmission. Figure 2-2 illustrates the comparison of uncompressed and compressed frames of
Foreman sequence. Both frames are in QCIF (176 x 144) 4.:2:0 image format. The compressed
frame is decoded using the H.264/AVC codec. It should be noted that, although the frame has
been compressed to less than 20 kbits from 304 kbits, the drop in the image quality is negligible

(> 37 dB).

13
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(a) Uncompressed Frame ( > 300 kbits) (b) Compressed Frame (19.12 kbits)

Figure 2-2: A comparison of uncompressed and compressed frames of Foreman Sequence

Considering the above, video coding aims to exploit the redundancies together with knowledge of
the Human Visual System (HVS), in order to achieve compression. The redundancies within a
video sequence can be identified as spatial and temporal correlations. Only the spatial correlations
can be exploited for coding still images. This is called intra-frame coding. If the temporal
correlations are exploited in addition to spatial correlations, it 1s called inter-frame coding. Inter-

frame predictive coding is a key coding principle, which is widely used in standard video codecs.

Video compression is based on three fundamental approaches:
e Spatial redundancy reduction: exploiting correlations within a frame

e Temporal redundancy reduction: exploiting correlations between successive frames

e Entropy coding: reducing redundancies between compressed data symbols

2.1.2.1 Spatial Redundancies

Exploiting spatial redundancies usually utilises predictive and transtorm coding:

e Predictive Coding

Some spatial redundancies are exploited by predicting the values of each pixel or pixel group
using previously coded information, and coding the error. This technique is called Differential
Pulse Code Modulation (DPCM). The highest contribution to this process comes from the
neighbouring pixels due to high spatial correlations. The neighbouring pixels can be either from

the same frame or from the adjacent frames. The prediction error is calculated and coded by

14
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comparing the predicted picture with the original picture at the encoder and at the decoder the

received signal is added to the prediction. Note that, this is a lossless process.

* Transform Coding

In transform coding, the pixel data is mapped into a transform domain prior to data reduction. In
most scenes, 1mage energy is concentrated in low frequency regions, i.e. in a few transform
coefficients. Insignificant coefficients can be discarded by quantising the coefficients so that data

compression can be achieved. This is a lossy coding technique since some of the coefficients (low

significant coefficients are totally discarded) can not be reconstructed.

e (Quantisation

The human eye responds differently to different spatial frequency coefficients i.e. if the
magnitude of higher frequency coefficients is below a certain threshold the human eye will not
detect it. Quantisation is a process that attempts to determine what information can be safely
discarded without a significant loss in visual fidelity. In other words, in the transform domain the
energy 1s unevenly distributed and quantisation exploits this property by using different
quantisation levels for each band. This is a lossy process as the reconstructed coefficients contain

quantisation noise.

2.1.2.2 Temporal Redundancies

Exploiting temporal redundancies usually makes use of motion estimation algorithm.

e Motion Estimation

Motion Estimation techniques are based on block matching each block and the best matching
block 1n the reference frame. First, frames are divided into blocks with m X n dimensions. Then
this block is compared against all blocks (within a pre-defined search window) of the same size in
the reference frame. The search window is usually larger than the block size and the searched
block is centred on the search window. The best matching block is chosen by considering several
approaches including Mean Squared Error (MSE) and Mean of Absolute Error (MAE). The
motion vector is the spatial displacement between the searched block and the best match. Once all
the blocks are searched within the reference frame, all motion vectors form a motion vector map.

This map is then used to generate the predicted frame by compensating with the reference frame.

2.1.2.3 Variable Length Coding

This technique reduces the redundant information in a bit stream independently of the spatial and
temporal correlations. Variable Length Coding (VLC) uses short code words for highly probable

values and long code words for the less probable ones. Huffman coding and arithmetic coding are

the most common VLC techniques and are widely employed in standard video codecs.
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2.2 Conventional Video Coding Techniques

Video coding techniques that do not follow the distributed source coding principles are called
conventional 1n this thesis. In this section, a historical view of conventional video coding

techniques followed by an overview of conventional encoder and decoder architectures are given.

2.2.1 History of Video Coding

Initial attempts at video coding for communications systems go back to the 1960s when an
analogue video phone system was tried out. Formal and organised video coding groups, the
International Telecommunications Union- Telecommunications Standardization Sector (ITU-T)
and the Joint Photographic Experts Group (JPEG), made had standardisation attempts in late
1980s. Figure 2-3 illustrates the evolution of video coding standards starting from 1984 [7].

H.261 standard codec used a combination of inter-frame Differential Pulse Code Modulation
(DPCM) and Discrete Cosine Transform (DCT). It was initially directed at video coding at 384
kbit/s, later extended to other bit rates (multiplies of 64 kbit/s).

The Motion Picture Experts Group (MPEG) investigated coding technologies for video storage,
such as CD-ROM in the early 1990s. The first generation of MPEG standard, MPEG-1, used
H.261 as a starting point. MPEG-1 was optimised for non-interlaced video at 1.2-1.5 Mbit/s rates.
Following this, a new generation of standards emerged for coding interlaced video at higher bit
rates (4-9 Mbit/s) called MPEG-2. MPEG-2 had a significant impact in many digital video
applications such as terrestrial broadcasting, satellite TV, cable TV and digital versatile disc
(DVD). Later, MPEG-2 was adopted by the ITU-T under the generic name of H.262 for
telecommunications. H.262/MPEG-2 featured scalability, an important feature for video

networking applications such as video on demand and multicasting.

After numerous developments on MPEG-1 and MPEG-2, the MPEG group started working on a
codec (MPEG-4) operating at very low bit rates (64 kbit/s or less). ITU-T, in parallel, carried out
some work on a new standard for similar target applications and a new codec named H.263 was
devised. With the improved compression efficiency over the years, the evolutions of this standard
were named as H.263+ and H.263++. In 1997, two groups, the ITU-T and the ISO/IEC MPEG
group came together and formed a Joint Video Team (JVT) in order to create a single video
coding standard: H.26L. Later, this codec was published jointly as Part 10 of MPEG-4 and ITU-T
Recommendation H.264 [11] and was called Advanced Video Coding (AVC).
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ITU
Standards H.261 H.263| H.263+ H.263++
H.262/ i H.26L

ITUMPEG MPEG-2 (H.264/MPEG-4v10)
Standards

MPEG MPEG-1 MPEG-4
Standards

!

o

Standards

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Figure 2-3: Evolution of video coding standards [7]

2.2.2 Conventional Video Encoder

To achieve the requirements of random access, a set of pictures can be defined to form a Group of
Pictures (GOP). In general, there are three basic types of frames in a GOP: Intra pictures (),
Unidirectional (forward) predicted pictures (P) and Bidirectional predicted pictures (B). Intra
frame coding (I) exploits the spatial correlations within the same frame, whereas P and B coding
exploits the temporal correlations with the reference frame(s). Each GOP includes one I frame and

several P and B frames, a typical GOP structure is illustrated in Figure 2-4.

Once the predicted frame (either intra or inter prediction) is obtained, the original frame to be
encoded is compared with the prediction signal. The prediction error (residual signal) is then
transformed (DCT), quantised and entropy coded with additional data (including motion vectors
and quantisation step sizes). A replica of the decoded frame is obtained by inverse quantisation,

inverse DCT transform and adding the residual signal in order to get the predicted frame. This

encoding procedure is shown in Figure 2-5.
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Figure 2-4: A typical GOP structure for video coding
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Figure 2-5: A typical conventional video encoder
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2.2.2.1 Transform Coding

In conventional video coding the Discrete Cosine Transform (DCT) is the most commonly used
transform coding technique. The DCT function for the integer 4x4 block based transform is
described in this section (as defined in H.264/AVC [11]). A two-dimensional matrix transform is
achieved through two one-dimensional transforms in both the horizontal and vertical directions

for each row and column of the 4x4 sample matrix from the source picture. The following 4x4

transform matrix is utilised for this purpose [11]:

2 1 -1 =2 (29)
H =

1 -1 -1 1

1 -2 2 -1

Matrix multiplication 1s performed on all non-overlapping 4x4 blocks of the frame. This operation
can be calculated using 16 bit arithmetic using only addition, subtraction and shifts. Each 4x4
block of pixels is transformed into a 4x4 block of DCT coefficients with each coetficient
representing some degree of spatial correlation within the pixel block. The significance of the
information carried in each coefficient varies in terms of image energy. The lower frequency
components, which correspond to the top-left coefficients of the DCT block (Figure 2-6), are
more significant when considering the HVS, as the human eye is more sensitive to low frequency
spatial information components.

Horizontal spatial
frequency increse

—_— >

Vertical spatial
frequency increse

Figure 2-6: Transform coefficients

The inverse DCT is then performed at the decoder using the following inverse transtorm matrix

(as defined in H.264/AVC [11]).
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(2.10)

2.2.2.2 Motion Estimation

Motion vectors of each block are encoded together with the prediction error. A block matching
algorithm 1s often utilised by partitioning the frame into blocks of M x N. The block matching
algorithm 18 generally performed only on the luminance data to reduce its complexity. As shown
in Figure 2-7, a search 1s performed for each block in the current frame within an area in the
frame called the search window. The block matching algorithm assumes that all pixels within the
current block go in the same direction over the search window. The best match for each block of
the current frame is found from the reference frame providing the minimum distortion. There are

several criteria for this evaluation including MSE and MAE:

M -1N-1

MSE(i,j)=-A—41}—V-ZZ(XC(m,n)—XR(m+i,n+j))2 (2.11)

m=0n=0

M —-1N -1

MAE(i, j):—MlﬁZZIXC(m,n)—XR(m+i,n+j)l (2.12)

m=0n=0

Reference Frame Current Frame

mr ol
Tl | |
SEHaE
BN
e

Best Match

| Current Block
Motion Vector: MV(x,y) ( M x N pixels)

Search Window

Figure 2-7: Motion estimation
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Where i and j are the search points within the search window: -Wy < i < Wy and -Wy <j < Wy. X,

(m,n) and X (m,n) represent the current block and reference blocks respectively and (m+i,n+ 7) 18

the location of the candidate pixel in the reference corresponding to the location (m,n) in the

current frame.

The (iy) couple that gives the minimum distortion according to equations (2.11) or (2.12),

represents the shift distance in horizontal and vertical directions and hence the corresponding

motion vector.

2.2.3 Conventional Video Decoder

A typical decoder architecture is shown in Figure 2-8. The encoded bit stream is entropy decoded,

inverse transformed and inverse quantised to obtain the prediction error (residual signal). The
prediction error 1s then added to the predicted signal, which is motion compensated using the

motion vectors and the reference frames (previously obtained), to produce the output frame. The

decoded frame 1s stored for the future frames.

Motion
Vectors —
— - — — Entropy | ¢ Coded
e Decoder Stream
- Y
Inverse |
Quantisation
Output < 1 L
Video IDCT
Prediction
_ Y

Reference — | + Error
| Motion Frame | Frame [ |
Compensation r | Store
.+.

Figure 2-8: A typical conventional video decoder

In conventional video coding, as discussed above, the encoder complexity is significantly higher
than the decoder complexity due to motion estimation, intra-prediction search and the decoding
path at the encoder. This encoder-decoder balance suits one-to-many applications, such as
television broadcasting. However, for the applications listed in the introduction chapter, high
encoder complexity and a high number of encoders increase the overall cost and power usage.

Therefore, conventional video coding is not suitable for such applications.
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2.3 Distributed Source Coding

DVC is an adaptation of the theoretical framework of distributed source coding (DSC) set by the
Slepian-Wolf theorem [12] and the Wyner-Ziv [13] theorem for video coding. The DSC concept
deviates from the conventional source coding paradigm in the context of the dependency of
encoding statistically correlated sources. In the conventi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>