19 research outputs found

    Contributions à la commande prédictive des systèmes de lois de conservation

    Get PDF
    La Commande prédictive ou Commande Optimale à Horizon Glissant (COHG) devient de plus en plus populaire dans de nombreuses applications pratiques en raison de ses avantages importants tels que la stabilisation et la prise en compte des contraintes. Elle a été bien étudiée pour des systèmes en dimension finie même dans le cas non linéaire. Cependant, son extension aux systèmes en dimension infinie n'a pas retenu beaucoup d'attention de la part des chercheurs. Ce travail de thèse apporte des contributions à l'application de cette approche aux systèmes de lois de conservation. Nous présentons tout d'abord une preuve de stabilité complète de la COHG pour certaines classes de systèmes en dimension infinie. Ce résultat est ensuite utilisé pour les systèmes hyperboliques 2x2 commandés aux frontières et appliqué à un problème de contrôle de canal d'irrigation. Nous proposons aussi l'extension de cette stratégie au cas de réseaux de systèmes hyperboliques 2x2 en cascade avec une application à un ensemble de canaux d'irrigation connectés. Nous étudions également les avantages de la COHG dans le contexte des systèmes non linéaires et semi-linéaires notamment vis-à-vis des chocs. Toutes les analyses théoriques sont validées par simulation afin d'illustrer l'efficacité de l'approche proposée.The predictive control or Receding Horizon Optimal Control (RHOC) is becoming increasingly popular in many practical applications due to its significant advantages such as the stabilization and constraints handling. It has been well studied for finite dimensional systems even in the nonlinear case. However, its extension to infinite dimensional systems has not received much attention from researchers. This thesis proposes contributions on the application of this approach to systems of conservation laws. We present a complete proof of stability of RHOC for some classes of infinite dimensional systems. This result is then used for 2x2 hyperbolic systems with boundary control, and applied to an irrigation canal. We also propose the extension of this strategy to networks of cascaded 2x2 hyperbolic systems with an application to a set of connected irrigation canals. Furthermore, we study the benefits of RHOC in the context of nonlinear and semi-linear systems in particular with respect to the problem of shocks. All theoretical analyzes are validated by simulation in order to illustrate the effectiveness of the proposed approach.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Contrôle de systèmes hyperboliques par analyse Lyapunov

    Get PDF
    In this thesis we have considered different aspects for the control of hyperbolic systems.First, we have studied switched hyperbolic systems. They contain an interaction between a continuous and a discrete dynamics. Thus, the continuous dynamics may evolve in different modes: these modes are imposed by the discrete dynamics. The change in the mode may be controlled (in case of a closed-loop system), or may be uncontrolled (in case of an open-loop system). We have focused our interest on the former case. We procedeed with a Lyapunov analysis, and construct three switching rules. We have shown how to modify them to get robustness and ISS properties. We have shown their effectiveness with numerical tests.Then, we have considered the trajectory generation problem for 2x2 linear hyperbolic systems. We have solved it with backstepping. Then, we have considered the tracking problem with a Proportionnal-Integral controller. We have shown that it stabilizes the error system around the reference trajectory with a new non-diagonal Lyapunov function. The integral action has been shown to be able to reject in-domain, as well as boundary disturbances.Finally, we have considered numerical aspects for the Lyapunov analysis. The conditions for the stability and design of controllers by quadratic Lyapunov functions involve an infinity of matrix inequalities. We have shown how to reduce this complexity by polytopic embeddings of the constraints.Many obtained results have been illustrated by academic examples and physically relevant dynamical systems (as Shallow-Water equations and Aw-Rascle-Zhang equations).Dans cette thèse nous avons étudié différents aspects pour le contrôle de systèmes hyperboliques.Tout d'abord, nous nous sommes intéressés à des systèmes hyperboliques à commutations. Cela signifie qu'il existe une interaction entre une dynamique continue et une dynamique discrète. Autrement dit, il existe différents modes dans lesquels peut évoluer la dynamique continue: ces modes sont dictés par la dynamique discrète. Ce changement de mode peut être contrôlé (dans le cas d'une boucle fermée), ou non-contrôlé (dans le cas d'une boucle ouverte). Nous nous sommes intéressés au premier cas. Par une analyse Lyapunov nous avons construit trois règles de commutations capables de stabiliser le système. Nous avons montré comment modifier deux d'entre elles pour obtenir des propriétés de robustesse et de stabilité entrée-état. Ces règles de commutations ont été testées numériquement.Ensuite, nous avons considéré la génération de trajectoire pour des systèmes hyperboliques linéaires 2x2 par backstepping. L'étape suivante a été de considérer une action Proportionnelle-Intégrale pour stabiliser la solution du système autour de la trajectoire de référence. Pour cela nous avons construit une fonction Lyapunov non-diagonale. Nous avons montré que l'action intégrale est capable de rejeter des erreurs distribuées et frontières.Enfin, nous avons considéré des aspects numériques pour l'analyse Lyapunov. Les conditions pour la stabilité et la conception de contrôleurs obtenues par des fonctions de Lyapunov quadratiques font intervenir une infinité d'inégalités matricielles. Nous avons montré que cette complexité peut être réduite en considérant une sur-approximation polytopique de ces contraintes.Les résultats obtenus ont été illustrés par des exemples académiques et des systèmes dynamiques physiques (comme les équations de Saint-Venant et les équations de Aw-Rascle-Zhang)
    corecore