7 research outputs found

    Well-covered graphs and factors

    Get PDF

    FPT algorithms to recognize well covered graphs

    Full text link
    Given a graph GG, let vc(G)vc(G) and vc+(G)vc^+(G) be the sizes of a minimum and a maximum minimal vertex covers of GG, respectively. We say that GG is well covered if vc(G)=vc+(G)vc(G)=vc^+(G) (that is, all minimal vertex covers have the same size). Determining if a graph is well covered is a coNP-complete problem. In this paper, we obtain O∗(2vc)O^*(2^{vc})-time and O∗(1.4656vc+)O^*(1.4656^{vc^+})-time algorithms to decide well coveredness, improving results of Boria et. al. (2015). Moreover, using crown decomposition, we show that such problems admit kernels having linear number of vertices. In 2018, Alves et. al. (2018) proved that recognizing well covered graphs is coW[2]-hard when the independence number α(G)=n−vc(G)\alpha(G)=n-vc(G) is the parameter. Contrasting with such coW[2]-hardness, we present an FPT algorithm to decide well coveredness when α(G)\alpha(G) and the degeneracy of the input graph GG are aggregate parameters. Finally, we use the primeval decomposition technique to obtain a linear time algorithm for extended P4P_4-laden graphs and (q,q−4)(q,q-4)-graphs, which is FPT parameterized by qq, improving results of Klein et al (2013).Comment: 15 pages, 2 figure

    On a conjecture about inverse domination in graphs

    Get PDF

    The Roller-Coaster Conjecture

    Get PDF

    Research Evaluation 2000-2010:Department of Mathematical Sciences

    Get PDF

    Well-covered graphs and factors

    Get PDF
    AbstractA maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91–98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1,2]-factor FG, i.e. a spanning subgraph such that each component is 1-regular or 2-regular. Here, we characterize all well-covered graphs G satisfying α(G)=α(FG) for some perfect [1,2]-factor FG. This class contains all well-covered graphs G without isolated vertices of order n with α⩾(n-1)/2, and in particular all very well-covered graphs
    corecore