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Abstract

The work presented in this thesis is rooted in graph theory and algebra. An independent 

set in a graph G is a set of vertices in which no two vertices are adjacent. Let Si denote the 

number of independent sets of size i and define the independence polynomial of any graph G 

to be S{G, z ) =  X X o  Sizii where a  represents the size of the largest independent set in G. 

This paper examines the possible patterns of the coefficients of the independence polynomial 

for any graph G . We begin by reviewing terms and definitions necessary to discuss our work. 

We discuss the useful results of Alavi, Madle, Schwenk, and Erdos that states if we allow 

G to be any graph then the coefficients of the independence polynomial of G have no 

particular ordering. Further, one can order the coefficients in any desired manner. This led 

mathematicians to restrict themselves to a particular class of graphs, specifically those which 

are well-covered. Research conducted on well-covered graphs has culminated with work on 

the roller-coaster conjecture since the coefficients of the independence polynomial of G have 

a pattern up to the s ĥj term which mimics the behavior of roller-coasters. We will attempt 

to expand on the results of Matchett by manipulating a technique which he developed known 

as power magnification. Our work results in the existence of an independence polynomial 

for any given of the form, so +  s\z +  S2Z2 +  • • • +  sa za such that Si =  82 =  • • • =  sa for all 

even a  where G  is not well-covered.
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Chapter 1

Introduction

Graph theory involves studying the properties of graphs and the different relationships 

between vertices and edges. One of the ways in which you can represent one specific 

type of relationship is through the use of independence polynomials. It was conjectured 

that the coefficients for the polynomials of all graphs had a particular ordering in which 

the coefficients would increase to a maximum integer coefficient followed by decreasing 

coefficients. This conjecture was proved false and in fact a group of mathematicians were 

able to prove that no behavior exists in terms of the ordering of the coefficients of the 

polynomials. Thus another approach to studying this particular relationship was necessary 

in which we only consider a particular class of graphs. Again we study the behavior of the 

coefficients of the polynomials, known as the independence sequence. Through studying 

this behavior, The Roller-Coaster conjecture was born.

Imagine that you want to predict the movement of any given roller-coaster, and the 

process that would be necessary to do so. First it is conjectured that all roller-coasters 

travel upwards to a maximum point and then decrease until the end. We know this is false, 

but we also know that many roller-coasters possess several of the same properties, yet each 

one is unique in its own way. We transfer this idea to the coefficients of polynomials and 

their associated graphs which is the basis of this thesis. We will review the properties of 

graphs and their independence sequences, state the similarities which they possess, and 

attempt to predict the behavior of the coefficients of the polynomials which result from any 

given graph. This will require us to explain work previously done by other mathematicians

2



CHAPTER 1. INTRODUCTION 3

as well as state our results to this longstanding conjecture. The goal of this Master’s Thesis 

will be to expand, and improve the results of the roller-coaster conjecture by employing 

techniques first introduced by Philip Matchett [5]. In order to do so, however, we will 

introduce the reader to several key terms and definitions.

1.1 Definitions

It is necessary to discuss several preliminary terms and definitions so that the reader becomes 

acquainted with the fundamental concepts involved in our work. Since we are discussing a 

topic rooted in graph theory it is only natural that we start with a formal definition of a 

graph.

D efinition 1 . A graph, G, is set o f ordered pairs such that G =  {V ,E) where V  =  V(G) 

is the set o f  vertices in G and E  — E(G ) is the set o f edges in G.

Other than the definition of a graph, the most useful term that we will introduce is that 

of an independent set.

D efinition 2 . An independent set is a set o f  vertices from  a graph G, such that no two 

vertices in the set are adjacent.

In other words an independent set contains vertices which are not connected by an 

edge. Two vertices which are connected by an edge are referred to as adjacent vertices. 

Every graph contains exactly one independent set of size zero, namely the empty set. For 

simplicity, many of our examples will refer to complete graphs.

D efinition 3 . A complete graph, K n, on n vertices, is a graph in which every pair o f 

distinct vertices is connected by an edge.

Now we will use a complete graph to clarify the definition of independent sets. Suppose 

G =  K%, refer to the figure below.

Suppose we label the vertices 1,2, and 3. Then G has 4 independent sets. From our 

statement above, the empty set of G  is an independent set. The set {1 } is an independent 

set because it does not contain an edge with any vertex in the set, namely it does not
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1

Figure 1.1: R 3, a complete graph on three vertices.

contain and edge with itself. The sets {2 } and {3 } are also independent sets for the same 

reason that {1 } is an independent set. We can not choose an independent set which contains 

more than one vertex. This is because if we add any vertex to the sets {1 } , {2 } , or {3 } the 

new set of size two will contain an edge and the set will no longer be independent. Recall 

that our work will eventually place a restriction on G. This restriction will allow us to only 

consider those graphs which are well-covered. In order to determine whether a graph is 

well-covered or not we need to know what a maximal independent set is for any graph G.

D efinition 4 . A maximal independent set is an independent set that is not a subset o f any 

other independent set.

If we refer back to our earlier example in which G =  K 3 (see Figure 1.1), then { 1 } , {2 } , 

and {3 } are all maximal independent sets. This is because each set is not a subset of any 

other independent set. In other words, a set is maximal if it can not contain another vertex 

without an incident edge. If we consider the independent set {1 }, we can conclude that it 

is maximal because if we had { 1 , 2} or {1 ,3 } an incident edge would exist and therefore 

violate the definition of independent sets. Maximal independent sets are an important 

concept because they help to determine the independence number of any graph G.

D efinition 5 . For any graph, G, the independence number o f G is the cardinality o f  the 

maximum size independent set which we will denote as a(G ).

Note that the above definition refers to the maximum independent set and not the 

maximal independent set. The meanings of these two words are not the same and thus 

we will briefly explain the difference. A maximal independent set is a set in which no new 

vertices can be added to the set without also containing an edge. It is possible for a graph
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to have maximal independent sets of different sizes. For example, consider the case when 

G — P3, see Figure 1.2.

1 2  3

Figure 1.2: P3, a path graph on three vertices.

Suppose we label the vertices of P3, 1, 2, and 3 as shown above, then we can find two 

maximal independent sets whose size differ. By definition, {2 } is a maximal independent 

set of size 1. In addition, {1 ,3 } is an independent set of size 2. Therefore, we have found a 

graph which contains an independent set of size 1 and 2.

The maximum independent set will be the size of the largest independent set. Unlike 

the size of maximal independent sets, the size of the maximum independent set will always 

have one value. If we consider our example above then a (G ) =  2 since 2 is the largest 

independent set. Lastly we note that if in G every maximal independent set is of the same 

size, then the size of the maximal independent set will equal the size of the maximum 

independent set. This last statement will become clearer once we discuss the notion of well- 

covered graphs. However, from this statement we can conclude that the G we constructed 

above is not well-covered. Now that this distinction has been made we can continue our 

discussion of the independence number of a graph.

Suppose G =  K 3 (see Figure 1.1), then a(G ) =  1 because we know from our previous 

discussion that the maximal independent set is of size 1 and no larger independent sets 

exist. Therefore, for any complete graph the size of the maximal independent set is equal 

to the size of the maximum independent set. So, for any complete graph, K n, a ( K n) =  1. 

Since every pair of vertices are adjacent, K n can not contain an independent size larger 

than 1 . As mentioned previously, the topics discussed in this paper will be concerned with 

counting the number of independent sets of a given size, where 0 < i < n.

An algebraic technique used to represent the counting of independent sets is known as

the independence polynomial.
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D efinition 6 . The independence polynomial o f any graph G can be written as,

a

S (G ,z) =  J 2 siz i’
i=0

where Si =  Si(G) is the number o f  independent sets o f  size i in G and a  =  a(G ) is the 

independence number o f G.

For example, the independence polynomial of K n, a complete graph on n vertices, is 

S (K n, z) =  1 +  nx. In this example, So =  1 counts the number of independent sets of size 

zero otherwise known as the empty set. If we again consider then S(K%,z) =  1 +  3z 

since K% has one empty set and three independent sets of size one. Many of the definitions 

mentioned above are helping the reader understand the difference between a graph which is 

well-covered or not. Using the above definitions we can now formally state what is meant 

for a graph to be well-covered.

D efinition 7 . A graph G is well-covered i f  all maximal independent sets have the same 

size.

We denote the size of these independent sets to be ol{G) because the size of the maximal 

independent sets is equal to the size of the maximum independent sets for all well-covered 

graphs. We can conclude from this definition that K n is well-covered since all maximal 

independent sets are of size 1. In the next section we will discuss some general cases of 

graphs which are well-covered as well as graphs which are not.

Before continuing further, we should mention that throughout this paper we will not be 

considering graphs with loops or multiple edges. The reason for this is because we do not 

gain any additional information about independent sets by considering these. Because of 

that, our discussion will be based on that of simple graphs.

1.2 Well-covered graphs

There are many examples of well-covered graphs such a several cycle graphs.

D efinition 8. A cycle graph is a graph, Cn with n vertices, such that Cn consists o f a

closed circuit or chain.
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O
Figure 1.3: C7, a cycle graph on seven vertices.

Cycle graphs on 3,4 ,5 ,6, or 7 vertices are all well-covered. If one were to look at the 

cycle graph on seven vertices, C7 (see Figure 1.3), the size of the maximum independent set, 

which is also the size of the maximal independent set, of any vertex is 3. The independence 

polynomial of C7 is S (C 7, z) =  l  +  7z +  U z2+ 7 z3. At this point, we should make mention as 

to why Cg is not well-covered. In fact, C7 is the largest well-covered cycle graph possible. In 

C7 , label the vertices in order, from 1 to 7. If we want to choose an independent set of size 

3 we can choose every other vertex to be in the set. Therefore, {1, 3, 5} , { 2 ,4 ,6} , {3 ,5 , 7} 

would all be maximal independent sets. If we consider the first set mentioned {1 ,3 ,5 }  we 

note that 6 nor 7 could be in this independent set as vertex 6 is adjacent to vertex 5 and 

vertex 7 is adjacent to vertex 1.

Next, suppose we have Cg, see Figure 1.4, and again label the vertices in order from 1 

to 8. If we choose our independent sets in a particular manner, we can achieve two different 

maximal independent sets. The set {1 ,3 ,5 ,7 }  is an independent set of size four. This set 

is maximal since every vertex in the complement contains an edge with some vertex in the 

independent set. However, the set {1 ,4 ,7 }  is also a maximal independent set, but it is 

of size three. Again, every vertex in the complement of this independent set contains an 

edge with some vertex in the set. This contradicts our definition of well-coveredness since

Figure 1.4: Cg, a cycle graph on eight vertices.
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we have found two maximal independent sets with different cardinality. If we extend this 

idea to any cycle graph, Cn. in which n > 8 we see that there are two ways to choose 

maximal independent sets. One can either choose every other vertex to be in the maximal 

independent set of size [_§J or one can choose every third vertex which would result in a 

maximal independent set of size • We note that |_§J 7̂  LfJ f°r n ^  ̂ an<̂  therefore any 

cycle graph on more than 7 vertices will not be well-covered.

Now that we have introduced the preliminary definitions and terms to the reader, we 

will discuss the history of our work. The background will include previous conjectures and 

theorems stated by mathematicians throughout the years. From their work we can formally 

state the roller-coaster conjecture and our work towards expanding prior results.



Chapter 2

Background

Well-covered graphs and their independence sequences are a relatively new field of study. 

M.D. Plummer was credited with the formal introduction of well-covered graphs in 1970 

[8]. Plummer stated that a graph is said to be well-covered if the size of each maximal 

independent set is equal. Several years later in 1987, Alavi, Madle, Schwenk, and Erdos 

[1] investigated the possible orderings of the independence numbers si, s2, . . . ,  sa . This 

theorem does not require that our graphs be well-covered. Because of this we will delay 

statements for well-covered graphs until later. We will begin our discussion on graphs by 

introducing two operations which play an important role throughout this paper.

2.1 Graph operations: join and disjoint unions

These two operations are a key technique in our research because they allow us to combine 

graphs and gain additional insight into the orderings of independence numbers.

D efinition 9 . Let G\ and G2 be two graphs with disjoint vertex sets. Then the join o f  

G\ V G2 is the graph defined by the following:

V (G i V G2) =  V (G i) U V {G 2) and 

E {G i  V G2) =  £ (G i)  U E (G 2) U { x y . x e  (E (G i)}  , y e {V {G 2)} }  .

In other words, the join operation connects each vertex in G\ to every vertex in G2.

9
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In terms of the independent sets, joining G\ and G2 guarantees that no new independent 

sets have been created. Therefore, there does not exist an independent set which contains 

elements from both G\ and G2. This can be generalized in the following proposition.

To illustrate the above definition and proposition, assume we have G\ and G2 such that 

G \ =  K 2 and G2 =  £3 where E n is the empty set on n vertices.

•

#

°  ♦

(a) Gi = K 2 (b) G2 = E3

Figure 2.1: Gi and G2 prior to the join operation.

Then the independent sets, Si where i is the size of the set, of G\ and G2 are as follows:

Gl g 2

So 1 1

«1 2 3

S2 0 3

S3 0 1

Therefore, the sum of the coefficients yields a new polynomial 2 +  5z +  3z2 +  z3, but this 

polynomial is not equal to S{G\ V G2, z) because we have counted the empty set twice. For 

that reason we must subtract one, the empty set which has been over-counted to obtain, 

S (G i, z ) +  S(G 2, z) -  1 =  1 +  5z +  3z2 +  z3. Now let us consider the case of G\ V G2, see 

Figure 2.2.

Since we know that it is not possible to have an independent set which contains elements 

from both G\ and G2, the coefficients of the independence polynomial are:
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Figure 2.2: G\ V G2, the resulting graph after K 2 is joined with E 3.

ao(G iV G 2) =  l; 

s i (G i V G 2) =  5; 

S2(G i V G2) =  3; 

53(G i V G 2) =  1 .

Therefore,

S(G i v G2, 2) =  1 +  5  ̂+  3z2 +  z3 =  S{G  1) +  S{G 2) -  1

and thus the result is shown. We can extend this example to prove the proposition for any 

two graphs.

Proposition 1 . Let G\ and G2 be graphs with disjoint vertex sets. Then the independence 

polynomial o f  the jo in  0/ Gi V G2 is:

S (G i V G2, z) — S (G i, z) +  S(G 2i z) — 1 .

Proof. Assume Gi and G2 are graphs with disjoint vertex sets. As previously mentioned, 

the join creates edges between every vertex in G\ with every vertex in G2- Suppose that s\ G 

S(G i, z) and s f  G S(G 2, z), where s{ is the zth coefficient of its corresponding independence 

polynomial, and o(G i) =  a\ and a (G 2) =  ol2 and

S{G i,z) =  1 +  s\z +  s\z2 +  • • • +  slaizai
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and

S(G 2, z) =  1 +  s jz  +  s\z2 +  • • • +  s2a2za2

where S{ counts the number of independent sets in either G\ or G2 respectively. We connect 

every vertex in G\ with every vertex in G2 so that G\ V G2 now has independent sets which 

are entirely contained in either G\ or G2.

S{G i V G2, z) =  s\z +  s\z2 +  • ■ • + s la izai + s\z + s\z2 + • • • + s2a2za2 + 1

= 1 + s\z + s\z2 H------ h Slaizai + 1 + s\z + s\z2 + ---- b S2a2za2 -  1

=  S {G u z) +  S {G 2: z) - 1 .

Note that each graph contains an independent set of size zero, namely the empty set. If 

we are counting the number of independent sets in the join then we will have counted the 

empty set of G\ as well as the empty set of G2. For this reason, we subtract 1 on the right 

hand side of the equation.

Therefore, S(G\ V G2, z) =  S (G i,z )  +  S (G 2, z) — 1. D

However, what if we want to consider the join of n graphs? We can extend Proposition 

1 and prove this more generalized statement as well.

Theorem  2. Let each Gi} 1 < i < n, be graphs with disjoint vertex sets. Then the inde­

pendence polynomial o f the jo in  o f  G\ V G2 V • • • V Gn is:

S(G\ V G2 V • • • V Gn) =  5 (G i) +  S{G 2) +  • • • +  S{G n) -  (n -  1).

Proof. We will prove Theorem 2 by induction on n. First we assume that we have two 

graphs G\ and G2 with disjoint vertex sets. Then by Proposition 1,

S(G\ V G2, z) =  S(G\, z) +  S(G 2, z) — 1.

Next we assume that the polynomial of the join of any n — 1 graphs is

S(G i V G2 V • • • V G n -^ z) =  S (G u z) +  S (G 2, z) +  • • • +  S(G n- u  z) -  (n -  2).
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If we want the join of n graphs we will join one more graph to n — 1. By the definition of 

join this will create no new independent sets and connect every vertex in Gn with every 

vertex from Gi, G2, ■ ■., Gn- 1- Therefore, the independence polynomial will be,

S ((G i V G2 V • • • V Gn- 1) V Gn,z) =  S (G i V G2 V • • ■ V Gn- i , z )  +  S{G n,z ) -  1

=  S (G h  z) +  5 (G 2, z) +  • • •

+  S(G n- i ,  2) -  (n -  2) +  S(G„, 2) -  1 

=  5(G i) +  S(G 2) +  ■■■ +  S(G n) -  (n -  1).

The first equality follows from base case and the second step from the induction hypothesis. 

Therefore, the result holds. ^

We will now discuss another graph operation which effects the independence polynomial 

of graphs in a different way then the join operation. This operation is the disjoint union. 

Unlike the join operation, the disjoint union operation will not add edges in between graphs.

D efinition 10 . Let G\ and G2 be graphs with disjoint edge sets. Then the disjoint union 

o f these two graphs is defined as:

V(G\ hi G2) =  V'(Gi) U U(G2);

E (G i i±i G2) =  E (G 1)U E (G 2).

Unlike the join operation, the disjoint union will not connect any vertices from G\ with 

those edges contained in G2. This is important as it will allow us to have independent sets 

which contain vertices from both G\ and G2. This will have a vastly different effect from 

that of the join on the resulting independence polynomial. Note that we must mention the 

resulting independence polynomial of these graph operations because the ordering of the 

coefficients are the basis of much of the discussion in this thesis.

P roposition  3 . Let G\ and G 2 be graphs on disjoint vertex sets. Then

S(G  1 W G2, z) =  S(G  1, z)S (G 2, z).
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To illustrate this theorem we state the following example. Assume we have two graphs 

G\ and G2 with disjoint vertex sets. Let G\ =  and G2 =  AV Then our graphs can be 

represented in the figure below

(a) Gi =  K 3 (b) G 2 =  K 2

Figure 2.3: The above figure represents G\ and G2 prior to the disjoint union.

Because the disjoint union operation does not add any edges between G\ and G2, Figure 

2.3 also represents Gi l±l G2. From this we can conclude that

S(G i y G2) =  1 +  5z +  6z2 =  (1 +  32:)(1 +  2z) =  S {G l )S{G 2).

Before giving the form proof we will explain why the resulting independence polynomial 

makes sense. Suppose we want to calculate S2- Fix a vertex in A 3. Since A 3 is a complete 

graph it contains no independent set of size two. This implies in order to obtain an inde­

pendent set of size two, one vertex is contained in A 3 while the other vertex is contained is 

K 2. With our fixed vertex we have two vertices which can make an independent set. The 

same case will hold for all three vertices in A3. Therefore, S2 — 2 • 3 =  6. Now that the 

reader has gained some intuition, we will state the formal proof.

Proof. Let G\ and G2 be two graphs with disjoint vertex sets. Assume that a(G\) =  «1 and 

a (G 2) =  OL2- By definition, since G\ and G2 are distinct vertex graphs it should be noted 

that they share no edges in common. Because of this, any independent sets of size z, will 

consist of independent sets from the union of G\ and GV We will define the independent 

sets from G\ to be s\ and s f  to be those independent sets from GV Further assume that we 

are looking for an independent set of size k in G\ W G2. One can accomplish this by fixing 

an independent set of size i from G\ and pairing it with all independent sets of size k — i
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from G2 for all 0 < i < k. By doing this we have found independent sets of size i in G\ plus 

independent sets of size k — i from G2 which results in an independent set of i +  {k — i) k. 

The number of these is the same as taking independent sets of size k and multiplying them 

with the number of independent sets of size k — i.

This implies that the coefficients of the independence polynomial can be found using 

the following form:

k
S k ( G i  l±i G 2 ) =  S i { G i ) s k ~ i { G 2 ) -

i= 0

Thus,

S(G 1 WG2, z) =

(1 +  S\lz +  S21z2 H------- b Sai1zai)( 1 +  s\z +  s\z2 4------- b Sa2za2)

=  S(G 1,z)S(G 2iz).

□

Thus far we have seen the following examples of independence polynomials:

K 3 : S (K 3, z) =  1 +  3z 

C7 : S(C 7, z) =  l  +  7 z +  14z2 +  7z3 

K 2 V K h2 : S(G i V G2, z) =  1 +  5z +  4z2 +  /

K 3 l±) K 2 : S(G\ l±l G21 z) — 1 ~b 5z +  6zz.

At a very basic level, our work starts by asking a question regarding the coefficients of 

independence polynomials.

Q uestion 4 . Can we predict the behavior o f the independence sequence o f a graph G?

If we look closely at the coefficients of the independence polynomials above, perhaps we 

see a pattern. We know that our first term, sq, will always equal one. It appears as though
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after the so term that our coefficient increase to a maximum integer coefficients and then 

the coefficients decrease until the end.

2.2 Unimodality

Many mathematicians examined countless independence polynomials and in fact conjec­

tured that the behavior was exactly what we previously alluded to, that the coefficients in­

crease to some maximum point and then decrease. In fact, Brown, Dilcher, and Nowakowski 

[2] provided an answer to the question, can we predict the behavior of the independence 

sequence of a graph G ? The independence sequence of G refers to the coefficients of the 

independence polynomial. Recall our examples in which we have seen independence polyno­

mials which are inonotonically increasing, as well an example where the coefficients strictly 

increase to a maximum integer and then decrease. The latter case describes the behavior 

of unimodality.

D efinition 1 1 . A sequence, (so> ®i> ®2> • • • > ®a) Is said to be unimodal i f  there exists some 

value p, 0 < p < a , such that

so < s\ < ■ ■ ■ < sp and sp >  sp+i >•••>$«•

However, not all independence sequences of graphs are unimodal. Levit and Mandrescu 

[3] provide several counterexamples. Here we will state one such example and employ the 

techniques that have been previously mentioned.

S ({K 24 V (K 3 W K a U K 3)), z) =  (1 +  24z) +  (1 +  3z)2{1 +  4z)

=  (1 +  24z) +  (1 +  102 +  33z2 +  36z3) -  1 

=  1 +  34 z +  33z2 +  36z3.

We can see in the above example, that the independence sequence increases up to si 34 

followed by a decreasing term, s2 =  33, however s3 =  36. This increase from s2 to S3 vi­

olates the definition of unimodal. In fact, Alavi, Madle, Schwenk, and Erdos [1] disprove
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unimodality by developing the following theorem in which one can manipulate the coeffi­

cients to achieve any-ordered, coefficients.

T heorem  5 (Alavi et al. [1]). For any permutation ir o f the set { 1 , 2 , . . . ,  a }  there exists a 

graph whose independence sequence {so, s i , . . . ,  sa } satisfies

S7r(l) ^  s7r(2) < ■ • ■ < -̂jr(a) •

Note that there is no s^o) term since so =  1- This theorem allows to create an inde­

pendence polynomial in which we choose the ordering of the coefficients.

We will not prove this theorem, but rather speak of its implications in our work. Theo­

rem 5 allows us to create an independence sequence in which we choose the desired ordering. 

This answers the question posed above as not only can we guess the behavior of the coef­

ficients of an independence polynomial, but we can build those coefficients in any desired 

manner we choose. With this, we have answered our original question, can we determine 

the behavior of the coefficients of the independence polynomial of a graph, but not in a 

satisfying manner. This is because the answer is simply no. Although there is no apparent 

pattern, we can determine the ordering and have the independence sequence of a graph 

behave in any desired way.

This idea of any-ordering coefficients serves as a basis for the Roller-Coaster conjecture 

at its most elementary level. This is because Alavi, Madle, Schwenk, and Erdos considered 

G  to be any graph with no constraints. As others began to study the topic of joins, disjoint 

unions, and independence polynomials more questions arose. We know that there exists a 

graph, G, with no constraints, which we can order the independence sequence in any way 

we desire.

Q uestion 6 . Can we predict the behavior o f  the independence sequence o f  G i f  we restrict 

ourselves to a particular class o f  graphs?

In order to answer Question 6 we must first decide which graphs we will restrict ourselves 

to. Previous work completed focuses on well-covered graphs because of a number of well 

behaved properties which they possess. One of the nice properties is that computing the
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resulting independence polynomials of well-covered graphs is not difficult and will be shown 

later in this paper. In the next section we will discuss path graphs. This is to show the reader 

that within a particular class of graphs, we can have well-coveredness or not, depending on 

the number of vertices.

2.3 Paths

Some the earliest research which considered well-covered graphs was done by Brown, Dilcher, 

and Nowakowski [2]. They stated that a graph is well-covered provided every maximal 

independent set has the same size, a. This definition will be useful when we discuss the 

graph operations on well-covered graphs. Using the above definition, all complete graphs, 

K n, are well-covered since they have n +  1 independent sets, namely one empty set and 

n independent sets of size one. The empty set is never maximal because one can add any 

vertex to it and create a larger independent set. This is a nice result to have because we can 

choose any K n and not be concerned with determining whether or not it is well-covered. 

We have also already discussed cycle graphs in which Cn where n >  8 is not well-covered, 

see Figure 1.4. However, cycle graphs are not the only class of graphs with the behavior 

in which some graphs are well-covered while others are not. Path graphs, Pn are only 

well-covered for a few values of n.

D efinition 1 2 . A path on n vertices, Pn, is a sequence o f vertices such that

V{Pn) =  { 1 , 2, . . .  , n}

and

E(Pn) = {{iii + l } : l < i < n - l } .

Il

Figure 2.4: Pn, a path graph on n vertices with n — 1 edges.

Further, a path has two terminal vertices which are connected by an edge to one vertex,



CHAPTER 2. BACKGROUND 19

unlike the internal vertices which are connected by two edges to two vertices which can be 

seen in Figure 2.4.

Again consider the graph, P3 (see Figure 1.2), in which the vertices are labeled 1,2, 

and 3. P3 is not well-covered because all maximal independent sets do not have equal 

cardinality. However, P3 is not the only the path which is not well-covered.

Theorem  7. Any path, Pn, where n > 3  is odd, is not well-covered.

Note that Pi =  K\ is well-covered. For the proof, the reader can use the terminology 

and relate it to P3. The idea will extend to any path graph, Pn, where n is odd and n > 3.

Proof. Suppose we have a path on n > 3 vertices, where n is odd. A maximal independent 

set will consist of every other vertex in the graph starting at a terminal vertex. The size 

of this independent set will be This set is maximal because if we attempted to add

another vertex to the set, that vertex would contain an edge with a vertex in the independent 

set. Consider the complement of the independent set previously chosen which is nonempty 

since n > 3. This independent set would consist of ^  vertices and would also be maximal 

since it contains an edge with the remaining vertices not in the independent set. However, 

jz a j l .  Therefore, a path on n odd vertices is never well-covered. □

We have just shown that any graph of the form Pn, where n is odd, is not well-covered. 

However we have yet to mention Pn, where n is even. Unfortunately, even paths are not as 

straightforward because like cycle graphs, they are well-covered until the path contains 6 

vertices. In the case of P2, the size of the maximal independent set is one. You can choose 

either vertex and it will be contained in an independent set consisting of only itself. This 

means that the maximal independent set is of size one and P2 is well-covered. If we consider 

P4 then {1,3}  , {2 , 4}  , and {1,4}  are all maximal independent sets of size two. It is not 

possible to get a maximal independent set greater than two. Therefore, P4 is also well- 

covered. These are the only two cases in which Pn, where n is even, will be well-covered. 

We state and prove the following theorem to justify this statement.

Theorem  8. Any path, Pn, where n is even and n > 6, is not well-covered.
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Proof. For this proof we will use the same argument as we did for cycle graphs of size 8 

or larger, see Figure 1.4. We begin by choosing a maximal independent set which contains 

every other vertex starting with a terminal vertex. The size of this independent set will 

be as previously indicated. We will consider an independent set containing every third 

vertex starting from a terminal vertex. The size of this independent set will be |_f J- Note 

that both of these independent sets are maximal since any vertices not in the independent 

set contain an edge with those vertices contained in the independent set. Since  ̂ 7̂  [ f  J 1 

for n >  6, we have a contradiction to the definition of well-coveredness and the proof is 

complete. ^

2.4 Well-covered graph operations

The purpose of the discussion on paths was to make the reader aware that not every graph 

in a particular class is well-covered. In general, determining whether or not a graph is well- 

covered is a difficult task. If it is challenging to do so for one graph, imagine the difficulty 

of determining if the join and disjoint unions of many graphs will result in a well-covered 

graph. Because of the complexity of determining well-coveredness, we will provide some 

equivalent statements which allow alternative methods for determining well-coveredness. 

These theorems will make it easier to determine whether or not a graph resulting from a 

join or disjoint union will be well-covered.

Theorem  9. Let G\ and G2 be well-covered graphs. Then, the join  o f  G\ and G2 is well- 

covered i f  and only i f  a(G\) =

Proof. Assume we have two well-covered graphs G\ and G2 with a(G  1) =  a  and 0 (^ 2) =  

b\a b. Recall our earlier proof of Proposition 1 that if we consider the independent sets 

contained in the join, G\ V G2, then the independent sets must be entirely contained in 

either V(G\) or V (G2). If we fix some vertex from G\ and want to determine the size of 

the maximal independent set in which that vertex is is contained, we conclude that the 

size must be a. This is not dependent on the vertex we choose. Since we assumed G\ is 

well-covered any vertex chosen will be contained in an independent set of size a. Similarly, 

if we fix a vertex from G2 and want to determine the size of the maximal independent set
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containing it, then the size must be b. Since a  ^  6, we have G\ V G2 containing maximal 

independent sets with different cardinalities. This implies that G\ V 6’2 is not well-covered. 

Therefore, G\ V G2 will be well-covered provided that a(G\) =  To prove the other

direction we again assume G\ and G2 are well-covered. Assume that ot{G 1) =  0 (^ 2)- Any 

independent set in G\ V G2 is either entirely in Gi or entirely in G2 by definition. Therefore 

any maximal independent set has size a(G  1) =  ^

As an example of the above theorem, let us consider two graphs G\ and G2 such that 

G\ =  E kand G2 =  £ n-fc- The empty graph, E k, refers to the graph which has k vertices 

and no edges. This implies that | G\ |= k , | G2 |= n — k, and a(G\) =  k and a (G 2) =  n — k. 

By considering G\ V G2, we are now investigating the graph K k,n- k and by Theorem 9 the 

only case in which this results in a well-covered graph is when k =  n — k or k — 2 where n 

is even.

This result is helpful because we do not have to be concerned with determining whether 

or not the join of two graphs will be well-covered. We only need to guarantee that the 

graphs we are interested in joining are themselves well-covered and have equal independence 

numbers.

The disjoint union operation is quite similar to that of the join, however we will remove 

the restriction of our graphs needing to have the same independence number. Again, this 

is very useful because we only need to determine whether G\ and G2 are well-covered and 

that allows us to conclude that the disjoint union will be well-covered.

T heorem  10. The disjoint union o f two well-covered graphs is well-covered.

Proof. Assume that G\ and G2 are both well-covered and a{G\) — a  and 0 (^ 2) =  b. Then 

a(G\ l±l G2) =  a +  b since there are no edges between G\ and G2. In fact, every maximal 

independent set in G\ tfcl G2 has size <2 +  6.

Assume there exists a maximal independent set, /, with |/| < a  +  b. This implies that 

either \I nG\\ < a or \IP\G2\ < b .  In either case this means we can make I  larger in G 1 or 

G2. Thus, I  would not be maximal and we reach a contradiction. Therefore, the disjoint 

union of two well-covered graphs is well-covered. ^
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Note that in the above proof we did not mention whether or not a\ =  a 2- This is 

because the proof of this theorem does not depend upon their values. The reader might 

expect that at this point we will determine the resulting independence polynomials given 

our new restrictions on the join and disjoint union operations. However, this is not necessary 

because although we have made several restrictions on the graphs which may be used, the 

calculation of the independence polynomial is not affected.

We are now back to the same question we asked previously regarding all graphs. That 

is, is there a way to determine the behavior of the independence sequences associated with 

specifically well-covered graphs? Again, we will discuss the topic of unimodality as it is 

concerned with well-covered graphs.

2.5 The Unimodality Conjecture For Well-Covered Graphs

Brown, Dilcher, and Nowakowski [2] attempted to answer the question about determining 

the behavior of the independence sequences of well-covered graphs by stating a new conjec­

ture using an old idea. They conjectured that for all well-covered graphs, the independence 

sequence is unimodal. Recall that a sequence is said to be unimodal if there exists some 

value p such that

so < <  • ■ • < sp and sp > sp+1 >••■>«<*•

The formal statement of the conjecture is known as The Unimodality Conjecture.

C on jectu re 11. Independence sequences o f  well-covered graphs are unimodal.

As we saw in the case of unimodality for all graphs, well-covered graphs are not neces­

sarily unimodal either. Again, we state a counterexample provided by Levit and Mandrescu 

[3]. Let us construct a well-covered graph, G, in which 4ATio is the disjoint union of 4 com­

plete graphs on 10 vertices and K n(4) =  VfLi ^ 4- Note that K\q is well-covered by definition 

since we are taking the disjoint union of graphs. The independence number, a[K 10) b 

Similarly, K n^  =  1 is well-covered since a{E/f) =  1 and we can take the join of n of them 

which results in oi{Kn 4̂)) =  1. We can then calculate the independence polynomial of each
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of these graphs.

S(4K io, z) =  S (K io  i±i K io  l±l K\o l±i K\o, z) — (1 +  10z)4

and

S (K n{4), z) =  S {E 4 V E 4 V - - - V E 4, z ) = n { l  +  z)4 - n -  1.

Note that for S (K n^ ,z )  we are taking the join of n copies of E 4: hence the multiplication 

by n in the resulting independence polynomial.

Then,

G =  (4K w ) V K n{4), n >  1.

G is well-covered since oî(K iq) =  1 =  a (K n(4). We can then compute the independence 

polynomial of G  to be,

S(G„, z) =  n • (1 +  z)4 +  (1 +  10z )4 -  n +  1

=  1 +  (40 +  4 n)z +  (600 +  6n)z2 +  (4000 +  4n)z3 +  (10000 +  n)z4.

Since 40 +  4n < 600+  6n is true (for any n >  1), solving this inequality gives us a bound for 

when S(G n, z) is not unimodal. This occurs when 1700 < n <  2000. Michael and Traves 

[6] were the first to provide a counterexample for the Unimodality conjecture in the above 

example for n =  1701. Michael and Traves [6] prove that The Unimodality Conjecture is 

true for a  =  3, but were able to find counterexamples in the case when a  € {4, 5 , 6,7}  . 

However, Levit and Mandrescu [3] developed a list of criterion which will guarantee that 

the Unimodality Conjecture will be true for well-covered graphs with a particular given 

independence number.

Proposition  12 (Levit and Mandrescu). The following sufficient conditions ensure that 

the independence polynomial o f  a graph G is unimodal:

i. )  any connected component o f H o f  G has a (H ) < 2;

ii. )  a(G ) — 3 and G is well-covered;

in.) a (G ) =  4, where G is disconnected and well-covered;
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iv.) a (G ) =  5, where G =  H i U H 2 with a (H i) =  2 and H2 is well-covered;

v. ) cu(G) < a(G )  <  5 and G is well covered;

vi. ) a(G ) — 6, where G is disconnected and any component H  o f G with a (H ) G {3 , 4 ,5}

is well-covered and satisfies u (H ) <  a(H ).

We have gained some insight into the behavior of the coefficients of the independence 

polynomials of well-covered graphs, but have not yet claimed any general behavior for all 

well-covered graphs. Michael and Traves [6] developed the Roller-Coaster Conjecture to 

solve this problem. They claim that the independence sequence, spa/2] , Sfa/2] + i , . . . ,  sa , of 

well-covered graphs are unconstrained in accordance with Proposition 5. Before the formal 

statement of the conjecture, we must note that there are several constraints on independence 

sequences of well-covered graphs.

Theorem  13 (Matchett [5]). The independence sequence (so, s\. . . ,  sa ) o f  a well-covered 

graph G satisfies
so

(S)
< 51

(?)
< ... <

O '

Proof. Let §k b e  the independent /e-sets in G. In order to prove the result we will use a 

double counting argument. Let

Tk =  { ( Vk, Vfc+i) : Vk Ç Vk+i, Vk E Sfc, Vk+1 G Sfc+ i} •

In order to count the size of Tk we will fix a Vk+i and count the number of sets corresponding 

to Vk. The way to do this is to fix Vfc+i and delete one vertex. Continue this process and 

this results in

I 3"/e |= (k +  1) | Sfc+i |— {k +  l)sfc,

where sk is the size of the independent k-sets in G. On the other hand, we can also fix Vk 

and get to the independence number. Any Vk G Sk is contained in an independent set of
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size a  because G is well-covered. So, | Tfc |> (a  — fc)sfc. This implies that

. , .   ̂ Sk , Sk+l
(a  -  k )sk <  (k +  l)sfc+i <i=> — - j—  <

sk ^ Sk+l
(a\ -  ( a  \

k\(a-k)\ (fc+l)!(a—fc—1)! \k) \k+lJ

□

The above results led to a very useful corollary stated and proved by Michael and Traves

[6].

C orollary 14. Let (so, s i , . . . ,  sa) be the independence sequence o f a well-covered graph. 

Then s0 < si < ■ ■ ■ < ŝ Q/2].

Proof. Let G be a well-covered graph with Si =  Si(G), where 0 < i < [§] and i represents 

the size of the ith independent set. If a  is odd then the coefficients of the independence 

polynomial reach a maximum value when a  =  \ot/2\. This is because (n^i) =  (n±i)- When

a  is even the maximum occurs at (“ ). Therefore, so < si < • • • < s \ol/2\ 1s correct
2

inequality in this case. ^

The corollary above is like the first portion of a roller-coaster. Every roller-coaster, 

no matter how big or small, must climb up until a maximum point is reached. After this 

maximum is reached our coefficients are unconstrained according to Michael and Traves [6]. 

In other words, after you reach the maximum height in the roller-coaster car, you do not 

know what will happen next.

2.6 The Roller-Coaster Conjecture

These new discoveries and conclusions resulted in the statement of the Roller-Coaster con­

jecture. The Roller-Coaster conjecture was originally stated by Michael and Traves [6]. For 

the purpose of this paper we will state the Roller-Coaster conjecture as a blend between 

the statements of Michael and Traves [6] and those of Philip Matchett [5].

C on jectu re 15 (The Roller-Coaster Conjecture). Let G be any well-covered graph whose 

independence number is a(G ) =  on. Then the coefficients o f  G are strictly increasing from  

so to S|-a/2-|, and the independence sequence o f  G is any-ordered on {[a/ 2] , . . . ,  a }  . That
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is, fo r  any permutation tt o f the set {[a/ 2] , . . . ,  a }  there exists a well-covered, graph whose 

independence sequence (so, s i , . . . ,  s«) satisfies

7 r ( S [ a / 2 l )  <  ^ ( s r « / 2l + l )  <  '  <

Figure 2.5: A graphical representation of the Roller-Coaster conjecture.

Michael and Traves [6] proved the Roller-Coaster conjecture for a  =  1 , . . . ,  7. Matchett

[5] was able to solve the conjecture for a  < 11. We will review several of these results. 

Consider the case when cn =  1. Then [ck/2] =  a  =  1 and the only criterion we need to show 

is that s0 < s\. Let G — K n. Since K n is well-covered we can compute its independence 

polynomial, S (K n, z) =  1 +  nz and thus the conjecture has been shown.

In the case where a  =  2, we need to consider two separate cases since fa/2] =  1. This 

means that S (G ,z ) is any ordered for s\ and S2- We want to show that it is possible to 

have an independence polynomial in which si < S2 and si > S2-

Suppose G =  K% i±l -K2, see Figure 2.3. We know that R 3 and K 2 are well-covered 

and thus by Theorem 3, S(G, z) =  (1 +  3z)(l +  2z) =  1 +  5  ̂+  6z2 and we have found an 

independence polynomial which satisfies si < S2. To show si > s2 again we take the disjoint 

union of two complete graphs. Let G =  K 2& K1, then S(G, z) =  ( l + 2z ) ( l+ z )  =  1 + 3 z+ 2 z  

and thus we have shown that the conjecture holds for a  =  2.

Next, consider the case cn =  3. Since [ct/2] =  2 we will again consider two separate cases,
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namely when S2 < S3 and S2 > S3. Let G — -K4W.K3tfcl.K3 then S (G ,z)  — ( l + 4 z ) ( l  +  3£)

1 _|_ 102: +  33z2 +  36z3, S2 < S3. For the second case we will consider the join operation. Let 

G =  £3 V E 3 such that G =  K ^ .  Theorem 9 tells us that G is a well-covered since we are 

joining two well-covered graphs with equal independence numbers. From Theorem 1 we 

calculate the independence polynomial, S (G ,z)  =  { l + 3z+?>z2+ z 2,) Jr{lP?>zJr?>z2+ z 2,) - l  =

1 +  6z +  622 +  2z3, so S2 > S3 and thus a  =  3 holds.

As the attempt to solve for higher values of a  we realize that it is becoming increasing 

more difficult to compute any-ordered coefficients by hand. Because of this Matchett [5] 

developed a new technique known as power magnification. Power magnification not only 

becomes useful to the Roller-Coaster conjecture, but in the case of Proposition 5 it makes 

it possible to prove their statement more concisely. Our goal is to prove the roller-coaster 

conjecture for larger values of a  >  11 using this new technique.

2.7 Power magnification

Before our formal definition, we need to discuss the notion of scaling independence poly­

nomials by positive rational constants and what this means in terms of a graph G. It is 

important to note that when discussing the ordering of the coefficients of the independence 

polynomial, we are not concerned with their absolute sizes, but rather their relative sizes. 

That is, the exact values of the coefficients are unimportant, but their ordering in relation to 

each other is. This is where we introduce a new concept known as scaling plays a role. If we 

want to scale a graph we multiply it by some rational constant. This scales the coefficients 

of the independence polynomial which makes sense from an algebraic perspective. However, 

scaling does not make sense in a graph theoretical sense and thus what we are creating will 

be known as pseudographs.

D efinition 13. A pseudograph is an object whose independence polynomial has been scaled 

by \ fo r  p ,q  >  0.

Note that if q =  1, this polynomial represents the join of q copies of G which would 

represent a true graph. If r ^  1 then we can multiply by r  to eliminate any denominators.
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What this means is that we haven’t gone too far away from true graphs. We can recover a 

graph with the same ordering of the independence sequence by multiplying by r.

To be precise, the independence polynomial of a pseudo graph will be of the form,

S (?G , z) — -S
q 1

The left hand side of the equation represents each coefficient being scaled by our rational 

constant 2. While on the right hand side of the equation we factor out our rational constant. 

In either case, we can multiply through by q to get S (p G ,z ) =  pS (G ,z). The reason for 

this aside, although not apparent at the moment, is because in order to discuss the notion 

of power magnification we need to address dividing by a constant.

D efinition 14. Let G be a well-covered graph with independence number a . Let

n

HC =  \+)KC
i— 1

which is the disjoint union o f n copies o f  K c fo r  large values o f c. Then G power magnified 

by n is defined as Hc l±l G.

S~—  —N

K c

V_______ )

n

Figure 2.6: G disjoint unions with n copies of K c.

To make it easier for the reader to follow, we will denote G power magnified by n as 

Gp =  Hp \H G. Further we claim that a sequence of polynomials converges to a polynomial 

/ if the coefficients of the sequence converge to the corresponding coefficients of f .

P roposition  16. Let G be a well-covered graph and G f be G power magnified by n. Then
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Gc is well-covered and we have

(2 .1)

Proof. Since Gnc =  Hc y G where Hc and G  are well-covered, it follows that G% is also 

well-covered. The resulting independence number will be a  +  n. Note that a(H c) =  n 

because the largest independent set of any complete graph is 1 and we are taking n copies, 

therefore the independence number corresponding to that independent set will be of size n. 

From Theorem 3, S{H C W G ,z) =  S{H C, z)S(G , z ). In order to compute the independence 

polynomial of Hc we will need to count the number of independent sets from 1 to n. 

Remember that by definition, Hc is the disjoint union of n copies of the complete graph 

on c vertices, where c is some large integer. This means that there are no edges between 

the copies of the K c graphs. The coefficients for the independence polynomial will come 

from choosing one vertex from each K c graph. Therefore, S(H c,z ) =  QCILo CD icz/ )  • We 

evaluate the limit of the left hand side of equation (1) as c —> oo. We will get:

It should be clearer to the reader now the necessity for discussing pseudographs. Suppose 

that znG is called the limit graph of G power magnified by n, then its independence polyno­

mial znS {G , z) =  limc^oo S(<3£, z). This statement calculates the independence polynomial 

of a pseudograph which may or may not represent a true graph. However, we can find 

graphs which approximate our desired polynomial as follows.

Lem m a 17. Given e > 0 and znG =  so +  s\z +  • ■ • +  sa-\-nzaJrn, there exists a large valued 

c such that the true graph, Gc, has independence polynomial bo +  b\z H-------b ba+nza 71 and

+  --- +  zn

+  • • • +  lim zn -b

□



CHAPTER 2. BACKGROUND 30

fo r  all i.

The above lemma tells us that it is possible to have a true graph Gc in which if we 

divide each coefficient by some large valued cn, then the coefficients of our pseudograph 

will be approximately equal to the coefficients of Gc. This is an important result because 

it implies that if we calculate a pseudograph with a desired ordering of its independence 

sequence, then there exists a scaled true graph which will have the same desired ordering

since Só < e. Note that this result holds because ^  does not change the linear

ordering of Gc.

We will now review Theorem 5 and reprove this theorem using power magnification and 

its associated properties. This is a nice application in which power magnification can be 

used to simplify a result. However, it is important to note that this theorem is stated for 

all graphs, no matter if they are well-covered or not. This allows us to add independence 

polynomials of different degrees using the join operation. The result of this type of join will

result in a graph which is not well-covered.

Refer back to Theorem 5, then using power magnification we can prove the result.

Proof. We know the empty set has an independence polynomial of S(Eo, z) — 1. We begin 

by power magnifying the empty graph by zn. Recall that zn represents an independent set of 

size n. After power magnification, the independence polynomial will become S (znE o , z) =  

zn. Given 7r, some permutation of the index set { 1 , 2 , . . . ,  a } ,  we can add the polynomials 

of S (znE o , z) by the join operation to obtain:

P (z) =  1 +  LS'i^W-Eo, z) +  2S (z^ 2)E 0, *) +  ••• +  a S {z ’ ia)Eo, z)

=  1 +  \z"{1) +  2z^ 2) +  ■ ■ ■ +  a z < aK

The final result holds because P (z) has the property that =  i for all i =  1 , . . . ,  a . 

Therefore s7r(i) < s ^ 2) < <  %(«)• 0

Power magnification has significantly cut down on the amount of work needed to prove 

Theorem 5, but what does it mean in terms of the Roller-Coaster conjecture? Remember 

that as a  increases new techniques were used to help solve the conjecture. We will discuss
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more specifically what role power magnification plays in this question after we state two 

important results shown by Matchett [5].

Theorem  18. I f  the last n terms o f the independence sequence fo r  a well-covered graph 

are any-ordered fo r  a given ao, then the last n terms o f  the independence sequence are 

any-ordered fo r  all ao < a .

Proof. Let cto and a  be given such that ao < a. Let a  =  ao +  1 and further suppose that 

G is well-covered and

S(G, z) — 1 +  S\Z +  ... +  Sa -n+lZa n+1 -\-----+  Sa Za i

where the n terms, sa_n+ i , . . . ,  Sq., have some desired ordering. We can create a power 

magnified graph by multiplying z(G, z). In this case a  =  ao +  1 and

zS (G , z) — Z +  S\Z2 -I------- b Sa-n+lZa 71+2 -1------- b Sa Za+1.

The desired ordering is preserved since each term is multiplied by 2 and thus the result is 

shown. ^

Although the above theorem may not immediately seem useful, the implication of this 

theorem eliminates a lot of calculations later on as we can see in the following corollary first 

stated by Matchett [5].

C orollary 19. I f  the Roller-Coaster conjecture is true fo r  some even value o f a , then the 

conjecture is also true fo r  a  +  1.

Proof. Apply Theorem 18 with a 0 =  L  Given that a  is even and true for the Roller-Coaster 

conjecture, we know that [a/2] =  f , . . . ,  a. The length of this sequence is l =  a  —  ̂ +  1. 

This implies that [a/2] =  | +  l , - -  - , a  -b 1 and ¿ =  a  +  l  — (| -b 1) +  1 =  a  — 2 “l"  ̂

from our original sequence. Therefore, if the last n terms of the independence sequence for 

well-covered graphs are any-ordered for a given a, then the last n terms of the independence 

sequence will be any-ordered for a  +  1 as well. D
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Now that we have these results, we can discuss the importance of power magnification 

in solving the Roller-Coaster conjecture. The technique which Matchett [5] uses is to power 

magnify independence polynomials of the form z*( 1 +  cz)° \ where c =  1. He then claims 

that we can perturb the coefficients to prove the conjecture for all a. This perturbed 

independence polynomial results in an almost flat-roller coasters.

D efinition 15. An almost flat-roller coaster graph is defined as the following:

i y (2-2)
fo r  i =  0 , 1 , . . . ,  ex..

Note that every H(X)l have independence number a . This preserves well-coveredness 

when taking joins of Ha j.  In order to do this, Matchett [5] uses matrices, lineal algebra 

operations, and computer technology. As o increases so do the sizes of the matrices and 

thus having a computer to set up these matrices and well as compute certain operations is 

helpful. The final result we will discuss is where we can guarantee any-ordered coefficients.

Matchett [5] proposes the following:

Theorem  20. Let ka be the largest integer fo r  which the last ka terms o f the independence 

sequence fo r  well-covered graphs with independence number a  are any-ordered. Then fo r  

sufficiently large a ,

—a  < ka < 0.8295.
2

The above theorem gives us a bound for within which our coefficients will be any- 

ordered. We use this fact along with power magnification as well as the join and disjoint 

unions of well-covered graphs to construct a graph in which the last (,1705)o; terms in the 

independence sequence are very close to being equal. We will then attempt to perturb these 

coefficients to obtain an any-ordered independence polynomial for Spsp . • •, sa .

The foundation for our work is complete and from here we will discuss our attempts to 

improve the results of Matchett. This is a difficult task and unfortunately we did not make 

any progress on the Roller-Coaster conjecture. However, we were able to come up with a 

new theorem and definition regarding flat roller-coaster graphs which are not necessarily
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well-covered. This new concept had not been considered before and yields an interesting

result.



Chapter 3

Research

This section will be broken into two pieces so that we may first give a brief overview as to 

what techniques we will be using followed by computation and results.

3.1 Outline

We began our research by creating an algorithm which would mimic the results of Matchett 

[5]. Since we already knew several of the solutions Matchett was able to calculate, we posed 

the following question.

Q uestion 21. Could we re-create these solutions and use our algorithm to solve fo r  larger 

cases o f a ?

Although we were able to create such an algorithm, we were unable to prove the conjec­

ture for ex. > 13. With that, we developed a new strategy. Recall that Matchett [5] power 

magnifies independence polynomials of the form, 2 (̂1 +  cz)a \ where c — 1.

Q uestion 22. What i f  c ^  1? What would the independence polynomials look like i f  we 

powered magnified the alternating graphs o f K c and K c+1 ?

Throughout this paper we have alluded to some type of technique which Matchett [5] 

creates in order to solve the Roller-Coaster conjecture for a  < 13. We will briefly explain 

this technique and then discuss how by altering this technique we have graphs which are

34
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no longer well-covered. This error will allow us to create a new theorem in which we create 

a flat roller-coaster. Matchett [5] uses linear algebra and possible solutions to the equation

M x =  y

for x  where xj > 0. We will be a bit vague about these matrices’ explicit values until the 

next section, but will give a brief description of each one. M  represents an (a  + 1 ) x (a + 1 ) 

matrix which contains exactly a  +  1 different independence polynomials created by joining 

power magnified K c and i^c+l graphs, x is an (ck+ I)  x 1 matrix whose corresponding entries 

represent the number copies of each independence polynomial from M  we need. And finally, 

y is an (a +  1) x 1 matrix in which m represents some flat condition on the coefficients of 

our roller-coaster. In the equation M x =  y, the matrix x  is the one which we will need 

solve for. Thus our goal will be to solve

x =  M -1 y if M  is invertible.

3.2 M atrix Computation

The rest of this paper will be dedicated to solving the above equation. The first topic which 

we will discuss is how M  is generated. We will then show the general form of any M  matrix 

followed by an example. We then need to compute M -1 , which we will call A , and show 

that indeed M A =  I a =  AM. We already stated that the matrix M  represents different 

independence polynomials, but did not say how this is done. For this, we introduce a new 

matrix H aj ,  which will contain the independence polynomials of pseudographs. Note that 

Ha as well as M  are indexed backwards.
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The graph H a is what generates any M  matrix. The entries correspond to power magnified 

graphs which we alternate between K c and K c+\. Therefore,

where tells us how many copies of a particular independent set we want. We will refer 

to each column in the above matrix as Hj where 0 < j  < a . Therefore, S (H j,z ) will be 

the independence polynomial corresponding to column j .  This implies that Ha contains 

a  +  1 total independence polynomials. The rows, i , where 0 < i < a  count the number 

of independent sets of size i from which S (H j,z )  is constructed. We will hold off on an 

example of Ha until we define M  and A.

Now that we know how M  is generated, we can discuss how to calculate M  given any

3.3 M  and its inverse

Before we begin our formal statement of M , we must note that we always assume that M  

is invertible. This is because in order to solve x  =  M -1y, we must be able to guarantee 

that M -1 exists. Based on that assumption we will show how to calculate M  given a.

Although we use Matchett’s M  matrix as a guide, the way in which we construct our 

matrix M  differs in that Matchett’s matrix only considers K c with c =  1. In our research 

we considered alternating complete graphs, K c and K c+\ for some large value of c. For our 

computation we consider c and a  to always be even. The importance of this will be seen 

later when we prove our results.

Let M  be an invertible (o +  1) x (a +  1) matrix in which M  — (m i j ). Further, assume 

that M  is upper-triangular whose row entries correspond to

a.

where i, j  E { 0 , 1 , 2 , . . . ,  cv}
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where

(i + 1)2 = <
if i +  1 is even 

if z H- 1 is odd.

Note that (i +  1)2 represents the addition of i +  1 modulo 2. Using these constraints we 

compute the general form of M  to be,

1 1 1 1 1

0 ¿ (Î ) + 1 )  ■ ■ ( + 1

0 0 (c + 1 )2© (c +  1)2©  ■ . (? )(c+  1)

0 0 0 c3©  • . ( ? u

0 0 0 0 • • ( © V -

0 0 0 0 1

The reader might be wondering why the final entry of the above matrix is always 1. This 

is because the a  column represents S(H a: z ) is which each of the entries have been power 

magnified by za . However, if we power magnify E q by za the result does not change. We 

will always have one independent set of size zero, power magnification does not alter this 

result.

Continuing on, we compute the binomial coefficients to obtain a simplified version of 

M.

1 1 1 1 1 1 1

0 c 2c 3c 4c 5c ac

0 0 ( c + 1 ) 2 3 ( c + l ) 2 6 ( c +  l ) 2 1 0 ( c + l ) 2 . ■ (2) ( c + 1 )

0 0 0 c3 4c3 10c3 • ( + 3

0 0 0 0 0 0 ( © v - 1

0 0 0 0 0 0 1
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Using this form of M  we can give an example of M  in which c =  4 and a  =  2. Then, M  is 

a 3 x 3 matrix whose entries are calculated using K 4 and K§ graphs.

M  =

1 1 1 

0 4 8 

0 0 1

Now that we have found the general form of any matrix, M, we will discuss the general 

form of its computed inverse. The reason for doing so is because our goal is to find solutions 

to the equation M x =  y in terms of x. We will introduce a new matrix A which is of the 

form A =  (d i j ). Assume that A is a (a + 1) x (a  + 1) matrix whose entries can be calculated 

using the M  matrix above. The entries of A are defined by: 

i.) d ij =  where i €  { 0 , 1 , 2 , . . . ,  a }  and j  G { 0 , 1 , 2 , . . . ,  a  — 1} and

1c when j is odd 

c +  1 when j  is even.

ii. ) Each entry ai;Q =  ( - l ) z+a(“);

iii. ) d ij  > 0 , Vi =  j  then row entries will alternate signs.

Using these properties, we compute the general form for all A =  (ß ij) to be

a i,j  —
6 )

( c + {j + 1)2 y

We can then compute the general form of A as follows:

(0) G) (n) ( V ) (_l)°+a((c+l)° c1 U+Tp •• cOC-l

0 ffl (?) (“f 1) ( - l ) 1+alc1 (c+l)a • ' ca-l

0 0 (?) ( V ) (_f)2+a(c-fl)2 c“- 1

0 0 0 0 /_2 ĈC+Q;
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Again, we can compute the binomial coefficients to achieve,

1 1 1 1 1 1
- A t  ( “ I ) “c (c + 1 )2 c3 U + T R c5

0 1 2 3 4 5
c U + T p c3 u + w

A  = 0 0
1 3 6 10

( - 1 ) “ “ 2
U + I F U + I R c5

0 0 0 0 0 0  0 0 1

Using the properties of A from above we calculate M  1 to be

M “1 =

1 - 3  1

0 0 1

Taking the example one step further we can calculate that M M  1 — h -

r -

1  1  1 1  - ?  1 1 0  0

0  4  8

CM1H
W0

= 0 1 0

r—1

00 0 0  1 0 0  1

. _ -

Recall that the general form of A is dependent on the assumption that A is in fact the 

inverse of M. We will now show that given the general form of any matrix M , we can 

compute a matrix A in which M A =  Is =  A M . This will allow us to conclude that A is 

the inverse of M.

Any matrix M  consists of entries with the following properties,

I ( c + (¿ + 1)2)*® 0 if
m ij =  <

I 1 if i =  j  =  a,

where 0 < i < a  and 0 < j  < a . We claim that the inverse of M, denoted A, consists of



CHAPTER 3. RESEARCH 40

(5+U+ISFH )W  i i j ^ a
<

(a)(_i)z+ Q! if j  =  Oi,
<

What we will show first is that

0 if i ±  j
(M A )ij =  <

1 if i =  j-

The first case which will consider is that of i > j . Since the product of 2 upper triangular 

matrices will result in an upper triangular matrix, it follows that if i > j  then (M A )ij =  0. 

The second case is to consider i < j  ^  a .

entries in which,

ai,j ~~

where 0 < i < a  and 0 < j  < a.

(M A )ij =  ^ 2 mi,kak,j 
k=o

= J^(c+ (z + 1)2)'
fc=0

a)
(c +  ( j  +  1)2)Jr ( - l )

i+k

_ ( c + (z  +  l ) 2)z j+k ( k\ ( A
" ( c + y  + 1)2) ^ ;  j W W '

Note that the equation is found since ^ + (^ 1) $  is a constant term- To show that

k=0 \ / \ /

we must use the Binomial Theorem which states that

(x +  v)k =  E ( ki ) xiyk~i -
i= 0 '  '

Using the Binomial Theorem and letting y =  — 1, for the i =  0 case we get

( x - i r = £ ( - i y kx k ' J
k=0
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If we then let x =  1,

o =  (i -  i y  =  ¿ ( - l y - * 1* ! ! )  =  £ ( - u
fc=0 k=0

Next we want to consider the case when i — 1 so we take the derivative of

(x i y  =  ¿ ( - i y - v
k=o

with respect to x.

For each case, we will always let y =  — 1. Then

¿(* - 1 r 1 = t k ( i y - 1( - i r k = £ * ( £ K ~ 1 h 7 "
k=0 ' 7 k=0 V 7

If we again let x =  1 then this case will also result in 0. If we want to solve for the i =  2 

case we will again take the derivative with respect to x and get

j ( j  -  d ( .  - 1 r 2 =  £ * ( * -  =  I X *  -
fc=0 '  7 fc=0

However, in this equation we do not have (*) which we would expect. To remedy this, we 

can divide both sides by 2 to get,

j ( j  -  l ) { x - l ) J-2
=  E

k=0

-*-) (  - A ^.fe-2/i y-fe( - i r fc -  E
k=0

k- 2

Let a; =  1 and the result holds.

Using this knowledge, we can calculate the result for any value of i < j  < cn by taking 

the ¿th derivative with respect to x:

( M x  -  i  y - ‘ =
jfc=0 '  7

where (k)i is known as the falling factorial such that

(k)i =  k{k  -  l ) { k  -  2) ■ ■ ■ {k -  i +  1).
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As we have done previously we multiply the above equation by jj such that

— = f k ĵ

Therefore, we obtain the equation,

0 )
i\

xk~ \ - iy - k.

If we let x =  1 then TT (k)xk~i (~ 1¥~k =  0 and we can conclude that

¿ ( - 1 r k
k=0

provided that i < j  < a . The result holds since (—i y +k and (—1 )J k will always have the

Next we consider i <C. j  — oc which is similar to what was shown above, but our constant 

changes. Namely,

Unlike the previous case, our constant does not have a denominator. This is because 

the entries in the a  column do not contain any constant factors. Using a similar proof as 

above using the Binomial Theorem, (¿) (fc) {~^-Y+k =  0-

The next case is when i =  j  — a . The result hold because of the construction of our 

matrices and the fact that we have assumed that a  is even:

same sign.

k=o

(M A )ij =  ( 0 , 0 , . . . , ! ) •  (0 , 0 , . . . , ! )  =  !.
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Therefore, if i =  j  =  a, then (M A )ij =  1.

The final case we must consider is i =  j  < at.

( M A ) i fi =  ^ ( c  +  (c +  1)2)* 
k=0

( j )
(C+ (¿+  1)2; (-1)i+k

In the above equation, if i < k then ( )̂ =  0 and if i > k then (£) — 0. This implies that 

the only relevant term exists when i =  k. If i =  k then

=  1.

Therefore, (M A )ij =  1. Combining the results of each of the five cases from above we can 

conclude that (M A )ij =  I a+1- 

Next we must show that

1 of i —j  

0 otherwise.

The first case is the same as that above. Consider i > j  then (A M )ij =  0 since the product 

of two upper triangular matrices is upper triangular. The next case is when i =  j  =  a . 

Again, the result is the same as the previous case,

(A M )ij =  (0 , 0 , . . . ,  1 ) • (0 , 0 , . . . ,  1 ) =  1 .
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The next case is when i — j  < a .

a

(A M )ij =  ^ 2  a ijkm k,i 
k=o
a—1 (k\

= v __ _̂_(
£1 (c+ (fc + l)2)fel

l)*+fc(c+(/c +  l ) 2)fc

+ (—l) i+a(c +  (a +  l ) 2)a

=  1.

This result hold since each binomial coefficient will be zero with the exception of the case 

when i =  k as we saw previously.

The next case is when i < j  ^  a .

a

(A M )ij =  ^ 2  ai,kmk,j

k—u

+ ( 2 ) {- i ) i + k { c + { a + i h r ( 2

By the Binomial Theorem we know that J2 k=o it) =  0 and the result is shown.

The final case we must show is when i < j  =  a .

a —1

(A M )ij =
k=0

Cl)
(■c + ( k  +  l ) 2)i

(-l)*+ fc(c+(fc + l)2)fc( “ )

+ ( “ ) ( - D ^ ( c  + (« + !)»)“ ( “)

=  0

by the Binomial Theorem.
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Thus we have proved that M A =  I a+1 — M A  and A — M  1. Therefore, for any matrix 

M  we can compute A =  M _1 such that M A  =  I a+i-

One would assume that the next step in our discussion should be focused on how to 

compute x  and y, however, we have made a fundamental error in calculating M. Before we 

continue any further calculations we must discuss what this error is and where it occurred.

3.4 No longer well-covered

Through all our computation and work we realize that we have not truly mimicked Match 

ett’s work nor his results. Let’s refer to our example from before where oc 2 and c 4.

M  =

1 1 1 

0 4 8 

0 0 1

From our definition of S (H j,z ) , M  consists of 3 different independence polynomials:

S{H 0, z ) =  0{z°E0) V O tfE o)  V l { z 2E 0) =  0z° +  Oz1 +  I 22 =  (3.1)

S(H i, z) =  0 {z°E0) V ^(z'Eo) V 1(z2E 0) =  0z° +  4z +  lz 2 = 4 z +  z2 (3.2)

S(H 2, z) =  1{zqE q) V 8{z1E 0) V 1{z2E 0) =  1 z° +  82 +  l z 2 =  1 +  82 +  z2 (3.3)

These independence polynomials are created by taking p  copies of well-covered graphs 

and then joining them together. The join of two well-covered graphs is itself well-covered 

if and only if they have the same independence number. If we look at the construction 

of equation (5), we conclude that the definition of well-coveredness has been violated. In 

equation (5), 1 {z°E 0) V 8{zE 0) V l(z 2£o) would not result in a graph which is well-covered. 

Namely, 8{zE 0) has a  =  1 whereas l { z 2E 0) has a  =  2. Because we joined two well-covered
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graphs with different independence numbers our resulting polynomial represents a graph 

which is not well-covered. Our problem initially occurs with the construction of Ha . Had 

we done a bit more investigation we could have realized a bit sooner than the construction

was flawed. If we look at the general form of M,

1 1 1 1 1

0 ¿ G ) c1©  c1©  . • c1©

0 0 (c +  i )2 ©  O ^ 1)2©  • • ( c + 1 ) 2©

M  =
0 0 0 c3(D • ■ ^ ( “)

0 0 0 0 1

and considered the construction of the a  — 2 column, as an example, we would have seen 

that

S (a  - 2 ,z) =  za Eo V (2c(za ~1Eo) V [(c +  l ) 2(za ~2E 0)} 

results in a pseudograph which is not well-covered since

a (z a E 0) ±  q((2c(z“- 1£ 0)) +  a([(c +  l ) 2^ 2£o)]).

This taught us a valuable lesson in that Matchett’s construction of M  with only K\ 

graphs was well thought out. This clever construction guaranteed that the joins would 

always be well-covered since a{K\) =  1.

Thus we have answered the questions posed before our research began. Yes, we could 

create an algorithm in which we obtain similar results to Matchett. However, we were 

unable to solve for a. > 13. Further, we were able to construct M  using K c and K c+\, but 

failed to maintain well-coveredness. However, we were able to come up with a new concept 

which we will refer to as flat roller-coasters.
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3.5 Flat Roller-Coasters

A flat roller-coaster is a new term which defines a polynomial in which the coefficients are 

equal.

D efinition 16. A polynomial is said to be flat i f  its independence polynomial is q0 +  q\z +  

q2z2 H------- h qaza ™ which | qi -  qj |= 0, therefore qi =  qj fo r  any 0 < i , j  <&.

In order to calculate a flat roller-coaster we will again refer to the equation, Afx y. 

In our earlier example, we did not calculate x  or y. Recall that X{ tells us how many copies 

of each Hj we need in order to satisfy some flat condition on y . yi represents the number of 

independent sets of G are of size i. As was the case earlier, these independence polynomials 

may not represent true graphs, however we can scale the coefficients such that we achieve 

an independence polynomial of a true graph.

The general form of M x =  y is

TTla.,<y. 1Zla,a—l TR'a.,a.—2 • mQ!,0 x a Va

naa—1,q nZa— l , a — 1 ^ a —1,0!—2 friot—l,o X ex—1 Va-1

TTla—2,a
m a - 2 , a - l 2,a —2 P 1 JO O Xa —2 = Va-2

1ZlQ,a W o ,a - l W 0,a - 2 r a 0 ,o XQ VO

Continuing with our prior example,

1 1 1 X2 V2

0 4 8 X\ = yi

0 0 1 XQ yo

Recall that we are trying to solve for x  so we must consider x  =  M  ]y,  as below:
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X2 1 - 3  1 2/2

Xl - 0 IM
I-1 1 to yi

Xo 0 0 1 yo
_ _ -  -

Therefore,
7
8 1

0 and y = 1

1 1
8 _ 8 _

We should mention one important fact about y. Recall that 771-0,0 7̂  1* In order for our 

solution to make sense for a true graph, we must have rao,o =  1- For any y we will normalize 

the mo,o term by multiplying by the inverse of mo,o- In the example above, this means we 

will multiply each term by 8 since § • 8 =  1. Therefore, we can finally conclude that if 

we take | copies of H2, 0 copies of H u and § copies of H0 the resulting independence 

polynomial will be flat after being normalized. After this normalization occurs, we get a 

flat roller-coaster. Its corresponding polynomial is

S(G,z)  =  8z2 +  8z +  1.

Prom this, we formulate a new theorem which states that for any value of a, a flat 

roller-coaster exists.

Theorem  23. Let a  be even. Then there exists a pseudograph with independence polynomial 

So -(- S\Z -|- . . .  -|- SqẐ  such that ŝ  — Sj fo r  all 1 ^ i , J  ^ ot.

One should wonder how we are able to guarantee that x  > 0. Recall that we made 

the claim earlier in this paper that for our M  matrix we would always consider a  to be 

even. What we will show is that if we sum pairs of row entries from M ~l each sum will be 

non-negative. Since y is a vector containing all ones, with the exception of the last column, 

if the entries of are non-negative then x  must also be non-negative. We will consider 

the last column individually by excluding it from any summations. First, we will prove that
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d ij  > 0 where i — j  for all 0 < i, j  <  «•

Proof. Fix i. Assume that a  is even which implies that all diagonal entries are positive 

since each diagonal entry is computed by

• •______________ itL____
L> (c +  (* +  1)2)

> 0 where 0 < i < a.

Next what we will show is that if we start the summation of entries of M  1 on the 

positive diagonal then each pair of entries i, i +  1 will sum to a non-negative integer.

a —1
(1)

j=t (c +  (j  +  1)2)̂ +  ( - l )
i+ a (?)

= (-i)i+ i (*)
C+ (Ì +  1)2; +  ( - l )

i+ 1 + i

( c +  (a  +  1)2)“

f t1)
(C +  (i +  1 +  l)2)ï+1

We note that,

=
-T — ( itu+T if i is oddc1 ( c + l ) î+1

if*  is even.

1___ i  +  1
Ì 1(c +  1)

ci+l > (<H-1)*(*+1) =  (¿+ l)ci+ ( i+ l)  f x \cl 1+ - - - + ( i + l ) i  .y  J+

provided that c is large enough the above result will hold.

In general, for any pairwise entires d ij  and CLij+1 we compute the sum as,

( c + ( j  + 1)2)̂  ^  ( c + { j + 2)2y +l
(i) +

(-1) i+ j
____________(- i)-+ f+ 1(f+1)

c +  ( j + 1)2)̂  ' (c +  { j h ) j+1
ffl +
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Again, we note that there are two cases when solving the above equation,

(-1)i+j. ©
(c +  (j +  1)2)

+
(c +  0')2)J+1

if i is odd 

if i is even.

If the sum of the pairwise entry contains the a  column then a similar result hold since

r r 1) (?)
ca~l ( c + l ) a

m __mti> ( c + l ) J  + 1

«)
C+iy

m
C-5 +  1

provided that c is large enough. u

Thus we have just shown that given any even a  and c there exists a flat roller coaster 

and our work for this paper is complete.



Chapter 4

Conclusion

Our thesis work attempted to improve and expand on the results of the Roller-Coaster 

conjecture originally stated by Michael and Traves [6]. Philip Matchett has gained the 

largest result thus far by proving the conjecture true for a  < 11. Although we did not 

reach our initial goal, we were able to construct a matrix, Af, which possesses some nice 

properties. Rather than using Matchett’s construction which used only complete graphs on 

one vertex, we considered graphs on c vertices where c > 1. The resulting matrix did yield 

results, however, our results regarded all graphs and not just those which were well-covered. 

Instead of expanding on prior results, we proved a theorem that states that there exists a 

graph whose coefficients are equal with the exception of the first term.

In the future we hope to work with our M  matrix and attempt to gain insight into how 

to manipulate our construction so that we can gain results with well-covered graphs. We 

realize that Matchett’s construction is extremely clever, but believe that there is a way to 

use complete graphs other than K\s to solve the roller-coaster conjecture.

One area of work left for future research is to consider a different class of graphs. Our 

research was only concerned with graphs that are well-covered, but other graphs certainly 

could be used. We are unsure if this would yield results, but is an interesting idea for future 

work.
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