24 research outputs found

    Mixed formulations for the convection-diffusion equation

    Get PDF
    This thesis explores the numerical stability of the stationary Convection-Diffusion-Reaction (CDR) equation in mixed form, where the second-order equation is expressed as two first-order equations using a second variable relating to a derivative of the primary variable. This first-order system uses either a total or diffusive flux formulation. Westart by numerically testing the unstabilised Douglas and Roberts classical discretisation of the mixed CDR equation using Raviart-Thomas elements. The results indicate that,as expected, for both total and diffusive flux, the stability of the formulation degrades dramatically as diffusion decreases.Next, we investigate stabilised formulations that are designed to improve the ability of the discrete problem to cope with problems containing layers. We test the Masud and Kwack method that uses Lagrangian elements but whose analysis has not been developed.We then significantly modify the formulation to allow us to prove existence of a solution and facilitate the analysis. Our new method, which uses total flux, is then tested for convergence with standard tests and found to converge satisfactorily over a range of values of diffusion.Another family of first-order methods called First-Order System of Least-Squares (FOSLS/LSFEM) is also investigated in relation to solving the CDR equation. These symmetric,elliptic methods do not require stabilisation but also do not cope well with sharp layers and small diffusion. Modifications have been proposed and this study includes aversion of Chen et al. which uses diffusive flux, imposing boundary conditions weakly in a weighted formulation.We test our new method against all the aforementioned methods, but we find that other methods do not cope well with layers in standard tests. Our method compares favourably with the standard Streamline-Upwind-Petrov-Galerkin method (SUPG/SDFEM), but overall is not a significant improvement. With further fine-tuning, our method could improve but it has more computational overhead than SUPG.This thesis explores the numerical stability of the stationary Convection-Diffusion-Reaction (CDR) equation in mixed form, where the second-order equation is expressed as two first-order equations using a second variable relating to a derivative of the primary variable. This first-order system uses either a total or diffusive flux formulation. Westart by numerically testing the unstabilised Douglas and Roberts classical discretisation of the mixed CDR equation using Raviart-Thomas elements. The results indicate that,as expected, for both total and diffusive flux, the stability of the formulation degrades dramatically as diffusion decreases.Next, we investigate stabilised formulations that are designed to improve the ability of the discrete problem to cope with problems containing layers. We test the Masud and Kwack method that uses Lagrangian elements but whose analysis has not been developed.We then significantly modify the formulation to allow us to prove existence of a solution and facilitate the analysis. Our new method, which uses total flux, is then tested for convergence with standard tests and found to converge satisfactorily over a range of values of diffusion.Another family of first-order methods called First-Order System of Least-Squares (FOSLS/LSFEM) is also investigated in relation to solving the CDR equation. These symmetric,elliptic methods do not require stabilisation but also do not cope well with sharp layers and small diffusion. Modifications have been proposed and this study includes aversion of Chen et al. which uses diffusive flux, imposing boundary conditions weakly in a weighted formulation.We test our new method against all the aforementioned methods, but we find that other methods do not cope well with layers in standard tests. Our method compares favourably with the standard Streamline-Upwind-Petrov-Galerkin method (SUPG/SDFEM), but overall is not a significant improvement. With further fine-tuning, our method could improve but it has more computational overhead than SUPG

    Efficiency-based hp-refinement for finite element methods

    Get PDF
    Two efficiency-based grid refinement strategies are investigated for adaptive finite element solution of partial differential equations. In each refinement step, the elements are ordered in terms of decreasing local error, and the optimal fraction of elements to be refined is deter- mined based on e±ciency measures that take both error reduction and work into account. The goal is to reach a pre-specified bound on the global error with a minimal amount of work. Two efficiency measures are discussed, 'work times error' and 'accuracy per computational cost'. The resulting refinement strategies are first compared for a one-dimensional model problem that may have a singularity. Modified versions of the efficiency strategies are proposed for the singular case, and the resulting adaptive methods are compared with a threshold-based refinement strategy. Next, the efficiency strategies are applied to the case of hp-refinement for the one-dimensional model problem. The use of the efficiency-based refinement strategies is then explored for problems with spatial dimension greater than one. The work times error strategy is inefficient when the spatial dimension, d, is larger than the finite element order, p, but the accuracy per computational cost strategy provides an efficient refinement mechanism for any combination of d and p

    A survey of Trefftz methods for the Helmholtz equation

    Get PDF
    Trefftz methods are finite element-type schemes whose test and trial functions are (locally) solutions of the targeted differential equation. They are particularly popular for time-harmonic wave problems, as their trial spaces contain oscillating basis functions and may achieve better approximation properties than classical piecewise-polynomial spaces. We review the construction and properties of several Trefftz variational formulations developed for the Helmholtz equation, including least squares, discontinuous Galerkin, ultra weak variational formulation, variational theory of complex rays and wave based methods. The most common discrete Trefftz spaces used for this equation employ generalised harmonic polynomials (circular and spherical waves), plane and evanescent waves, fundamental solutions and multipoles as basis functions; we describe theoretical and computational aspects of these spaces, focusing in particular on their approximation properties. One of the most promising, but not yet well developed, features of Trefftz methods is the use of adaptivity in the choice of the propagation directions for the basis functions. The main difficulties encountered in the implementation are the assembly and the ill-conditioning of linear systems, we briefly survey some strategies that have been proposed to cope with these problems.Comment: 41 pages, 2 figures, to appear as a chapter in Springer Lecture Notes in Computational Science and Engineering. Differences from v1: added a few sentences in Sections 2.1, 2.2.2 and 2.3.1; inserted small correction

    Least-squares methods for computational electromagnetics

    Get PDF
    The modeling of electromagnetic phenomena described by the Maxwell's equations is of critical importance in many practical applications. The numerical simulation of these equations is challenging and much more involved than initially believed. Consequently, many discretization techniques, most of them quite complicated, have been proposed. In this dissertation, we present and analyze a new methodology for approximation of the time-harmonic Maxwell's equations. It is an extension of the negative-norm least-squares finite element approach which has been applied successfully to a variety of other problems. The main advantages of our method are that it uses simple, piecewise polynomial, finite element spaces, while giving quasi-optimal approximation, even for solutions with low regularity (such as the ones found in practical applications). The numerical solution can be efficiently computed using standard and well-known tools, such as iterative methods and eigensolvers for symmetric and positive definite systems (e.g. PCG and LOBPCG) and reconditioners for second-order problems (e.g. Multigrid). Additionally, approximation of varying polynomial degrees is allowed and spurious eigenmodes are provably avoided. We consider the following problems related to the Maxwell's equations in the frequency domain: the magnetostatic problem, the electrostatic problem, the eigenvalue problem and the full time-harmonic system. For each of these problems, we present a natural (very) weak variational formulation assuming minimal regularity of the solution. In each case, we prove error estimates for the approximation with two different discrete least-squares methods. We also show how to deal with problems posed on domains that are multiply connected or have multiple boundary components. Besides the theoretical analysis of the methods, the dissertation provides various numerical results in two and three dimensions that illustrate and support the theory
    corecore